Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (96)
  • Open Access

    ARTICLE

    Research on Integrating Deep Learning-Based Vehicle Brand and Model Recognition into a Police Intelligence Analysis Platform

    Shih-Lin Lin*, Cheng-Wei Li

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.071915 - 09 December 2025

    Abstract This study focuses on developing a deep learning model capable of recognizing vehicle brands and models, integrated with a law enforcement intelligence platform to overcome the limitations of existing license plate recognition techniques—particularly in handling counterfeit, obscured, or absent plates. The research first entailed collecting, annotating, and classifying images of various vehicle models, leveraging image processing and feature extraction methodologies to train the model on Microsoft Custom Vision. Experimental results indicate that, for most brands and models, the system achieves stable and relatively high performance in Precision, Recall, and Average Precision (AP). Furthermore, simulated tests… More >

  • Open Access

    ARTICLE

    Side-Scan Sonar Image Synthesis Based on CycleGAN with 3D Models and Shadow Integration

    Byeongjun Kim1,#, Seung-Hun Lee2,#, Won-Du Chang1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1237-1252, 2025, DOI:10.32604/cmes.2025.073530 - 26 November 2025

    Abstract Side-scan sonar (SSS) is essential for acquiring high-resolution seafloor images over large areas, facilitating the identification of subsea objects. However, military security restrictions and the scarcity of subsea targets limit the availability of SSS data, posing challenges for Automatic Target Recognition (ATR) research. This paper presents an approach that uses Cycle-Consistent Generative Adversarial Networks (CycleGAN) to augment SSS images of key subsea objects, such as shipwrecks, aircraft, and drowning victims. The process begins by constructing 3D models to generate rendered images with realistic shadows from multiple angles. To enhance image quality, a shadow extractor and More >

  • Open Access

    ARTICLE

    Predicting Concrete Strength Using Data Augmentation Coupled with Multiple Optimizers in Feedforward Neural Networks

    Sandeerah Choudhary1, Qaisar Abbas2, Tallha Akram3,*, Irshad Qureshi4, Mutlaq B. Aldajani2, Hammad Salahuddin1

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1755-1787, 2025, DOI:10.32604/cmes.2025.072200 - 26 November 2025

    Abstract The increasing demand for sustainable construction practices has led to growing interest in recycled aggregate concrete (RAC) as an eco-friendly alternative to conventional concrete. However, predicting its compressive strength remains a challenge due to the variability in recycled materials and mix design parameters. This study presents a robust machine learning framework for predicting the compressive strength of recycled aggregate concrete using feedforward neural networks (FFNN), Random Forest (RF), and XGBoost. A literature-derived dataset of 502 samples was enriched via interpolation-based data augmentation and modeled using five distinct optimization techniques within MATLAB’s Neural Net Fitting module:… More >

  • Open Access

    ARTICLE

    Improved YOLO11 for Maglev Train Foreign Object Detection

    Qinzhen Fang1,2, Dongliang Peng1,2, Lu Zeng1,2,*, Zixuan Jiang1,2

    Journal on Artificial Intelligence, Vol.7, pp. 469-484, 2025, DOI:10.32604/jai.2025.073016 - 06 November 2025

    Abstract To address the issues of small target miss detection, false positives in complex scenarios, and insufficient real-time performance in maglev train foreign object intrusion detection, this paper proposes a multi-module fusion improvement algorithm, YOLO11-FADA (Fusion of Augmented Features and Dynamic Attention), based on YOLO11. The model achieves collaborative optimization through three key modules: The Local Feature Augmentation Module (LFAM) enhances small target features and mitigates feature loss during down-sampling through multi-scale feature parallel extraction and attention fusion. The Dynamically Tuned Self-Attention (DTSA) module introduces learnable parameters to adjust attention weights dynamically, and, in combination with More >

  • Open Access

    REVIEW

    Data Augmentation: A Multi-Perspective Survey on Data, Methods, and Applications

    Canlin Cui1, Junyu Yao1,*, Heng Xia2,*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 4275-4306, 2025, DOI:10.32604/cmc.2025.069097 - 23 October 2025

    Abstract High-quality data is essential for the success of data-driven learning tasks. The characteristics, precision, and completeness of the datasets critically determine the reliability, interpretability, and effectiveness of subsequent analyzes and applications, such as fault detection, predictive maintenance, and process optimization. However, for many industrial processes, obtaining sufficient high-quality data remains a significant challenge due to high costs, safety concerns, and practical constraints. To overcome these challenges, data augmentation has emerged as a rapidly growing research area, attracting considerable attention across both academia and industry. By expanding datasets, data augmentation techniques improve greater generalization and more… More >

  • Open Access

    ARTICLE

    Robust Skin Cancer Detection through CNN-Transformer-GRU Fusion and Generative Adversarial Network Based Data Augmentation

    Alex Varghese1, Achin Jain2, Mohammed Inamur Rahman3, Mudassir Khan4,*, Arun Kumar Dubey2, Iqrar Ahmad5, Yash Prakash Narayan1, Arvind Panwar6, Anurag Choubey7, Saurav Mallik8,9,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 1767-1791, 2025, DOI:10.32604/cmes.2025.067999 - 31 August 2025

    Abstract Skin cancer remains a significant global health challenge, and early detection is crucial to improving patient outcomes. This study presents a novel deep learning framework that combines Convolutional Neural Networks (CNNs), Transformers, and Gated Recurrent Units (GRUs) for robust skin cancer classification. To address data set imbalance, we employ StyleGAN3-based synthetic data augmentation alongside traditional techniques. The hybrid architecture effectively captures both local and global dependencies in dermoscopic images, while the GRU component models sequential patterns. Evaluated on the HAM10000 dataset, the proposed model achieves an accuracy of 90.61%, outperforming baseline architectures such as VGG16 More >

  • Open Access

    ARTICLE

    Deep Learning-Based Health Assessment Method for Benzene-to-Ethylene Ratio Control Systems under Incomplete Data

    Huichao Cao1,*, Honghe Du1, Dongnian Jiang1, Wei Li1, Lei Du1, Jianfeng Yang2

    Structural Durability & Health Monitoring, Vol.19, No.5, pp. 1305-1325, 2025, DOI:10.32604/sdhm.2025.066002 - 05 September 2025

    Abstract In the production processes of modern industry, accurate assessment of the system’s health state and traceability non-optimal factors are key to ensuring “safe, stable, long-term, full load and optimal” operation of the production process. The benzene-to-ethylene ratio control system is a complex system based on an MPC-PID double-layer architecture. Taking into consideration the interaction between levels, coupling between loops and conditions of incomplete operation data, this paper proposes a health assessment method for the dual-layer control system by comprehensively utilizing deep learning technology. Firstly, according to the results of the pre-assessment of the system layers… More >

  • Open Access

    ARTICLE

    Marine Ship Detection Based on Twin Feature Pyramid Network and Spatial Attention

    Huagang Jin, Yu Zhou*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 751-768, 2025, DOI:10.32604/cmc.2025.067867 - 29 August 2025

    Abstract Recently, ship detection technology has been applied extensively in the marine security monitoring field. However, achieving accurate marine ship detection still poses significant challenges due to factors such as varying scales, slightly occluded objects, uneven illumination, and sea clutter. To address these issues, we propose a novel ship detection approach, i.e., the Twin Feature Pyramid Network and Data Augmentation (TFPN-DA), which mainly consists of three modules. First, to eliminate the negative effects of slightly occluded objects and uneven illumination, we propose the Spatial Attention within the Twin Feature Pyramid Network (SA-TFPN) method, which is based More >

  • Open Access

    CASE REPORT

    Teapot ureterocystoplasty in posterior urethral valve and chronic kidney disease: a case report

    Geemitha Ratnayake*, Yaqoub Jafar, Bruno Leslie, Luis Henrique Braga*

    Canadian Journal of Urology, Vol.32, No.3, pp. 209-212, 2025, DOI:10.32604/cju.2025.064122 - 27 June 2025

    Abstract Background: Bladder augmentation is often necessary to address poorly compliant and low-capacity bladders which can result from Posterior Urethral Valve. Traditional techniques are limited by complications from using bowel tissue, thus in the setting of a megaureter, ureterocystoplasty is favorable. Methods: We present a case of Teapot ureterocystoplasty, which improves vascular protection of the ureter by leaving the distal 3 cm of the ureter tubularized. Cystograms demonstrated bladder capacity improvement from 50 mL to 180 mL post-operatively. Additionally, creatinine stabilized after a peak of 250 µmol/L. Result and Conclusion: This patient is doing well at 4.5-year More >

  • Open Access

    ARTICLE

    Bird Species Classification Using Image Background Removal for Data Augmentation

    Yu-Xiang Zhao*, Yi Lee

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 791-810, 2025, DOI:10.32604/cmc.2025.065048 - 09 June 2025

    Abstract Bird species classification is not only a challenging topic in artificial intelligence but also a domain closely related to environmental protection and ecological research. Additionally, performing edge computing on low-level devices using small neural networks can be an important research direction. In this paper, we use the EfficientNetV2B0 model for bird species classification, applying transfer learning on a dataset of 525 bird species. We also employ the BiRefNet model to remove backgrounds from images in the training set. The generated background-removed images are mixed with the original training set as a form of data augmentation.… More >

Displaying 1-10 on page 1 of 96. Per Page