Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (17)
  • Open Access

    ARTICLE

    Malware of Dynamic Behavior and Attack Patterns Using ATT&CK Framework

    Jong-Yih Kuo1, Ping-Feng Wang2,*, Ti-Feng Hsieh1,*, Cheng-Hsuan Kuo1

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3133-3166, 2025, DOI:10.32604/cmes.2025.064104 - 30 June 2025

    Abstract In recent years, cyber threats have escalated across diverse sectors, with cybercrime syndicates increasingly exploiting system vulnerabilities. Traditional passive defense mechanisms have proven insufficient, particularly as Linux platforms—historically overlooked in favor of Windows—have emerged as frequent targets. According to Trend Micro, there has been a substantial increase in Linux-targeted malware, with ransomware attacks on Linux surpassing those on macOS. This alarming trend underscores the need for detection strategies specifically designed for Linux environments. To address this challenge, this study proposes a comprehensive malware detection framework tailored for Linux systems, integrating dynamic behavioral analysis with the… More >

  • Open Access

    ARTICLE

    AI-Driven Sentiment-Enhanced Secure IoT Communication Model Using Resilience Behavior Analysis

    Menwa Alshammeri1, Mamoona Humayun2,*, Khalid Haseeb3, Ghadah Naif Alwakid1

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 433-446, 2025, DOI:10.32604/cmc.2025.065660 - 09 June 2025

    Abstract Wireless technologies and the Internet of Things (IoT) are being extensively utilized for advanced development in traditional communication systems. This evolution lowers the cost of the extensive use of sensors, changing the way devices interact and communicate in dynamic and uncertain situations. Such a constantly evolving environment presents enormous challenges to preserving a secure and lightweight IoT system. Therefore, it leads to the design of effective and trusted routing to support sustainable smart cities. This research study proposed a Genetic Algorithm sentiment-enhanced secured optimization model, which combines big data analytics and analysis rules to evaluate… More >

  • Open Access

    REVIEW

    Advanced Computational Modeling and Mechanical Behavior Analysis of Multi-Directional Functionally Graded Nanostructures: A Comprehensive Review

    Akash Kumar Gartia, S. Chakraverty*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 2405-2455, 2025, DOI:10.32604/cmes.2025.061039 - 03 March 2025

    Abstract This review explores multi-directional functionally graded (MDFG) nanostructures, focusing on their material characteristics, modeling approaches, and mechanical behavior. It starts by classifying different types of functionally graded (FG) materials such as conventional, axial, bi-directional, and tri-directional, and the material distribution models like power-law, exponential, trigonometric, polynomial functions, etc. It also discusses the application of advanced size-dependent theories like Eringen’s nonlocal elasticity, nonlocal strain gradient, modified couple stress, and consistent couple stress theories, which are essential to predict the behavior of structures at small scales. The review covers the mechanical analysis of MDFG nanostructures in nanobeams,… More > Graphic Abstract

    Advanced Computational Modeling and Mechanical Behavior Analysis of Multi-Directional Functionally Graded Nanostructures: A Comprehensive Review

  • Open Access

    ARTICLE

    Transformer-Aided Deep Double Dueling Spatial-Temporal Q-Network for Spatial Crowdsourcing Analysis

    Yu Li, Mingxiao Li, Dongyang Ou*, Junjie Guo, Fangyuan Pan

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 893-909, 2024, DOI:10.32604/cmes.2023.031350 - 30 December 2023

    Abstract With the rapid development of mobile Internet, spatial crowdsourcing has become more and more popular. Spatial crowdsourcing consists of many different types of applications, such as spatial crowd-sensing services. In terms of spatial crowd-sensing, it collects and analyzes traffic sensing data from clients like vehicles and traffic lights to construct intelligent traffic prediction models. Besides collecting sensing data, spatial crowdsourcing also includes spatial delivery services like DiDi and Uber. Appropriate task assignment and worker selection dominate the service quality for spatial crowdsourcing applications. Previous research conducted task assignments via traditional matching approaches or using simple… More > Graphic Abstract

    Transformer-Aided Deep Double Dueling Spatial-Temporal Q-Network for Spatial Crowdsourcing Analysis

  • Open Access

    ARTICLE

    Eye-Tracking Based Autism Spectrum Disorder Diagnosis Using Chaotic Butterfly Optimization with Deep Learning Model

    Tamilvizhi Thanarajan1, Youseef Alotaibi2, Surendran Rajendran3,*, Krishnaraj Nagappan4

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1995-2013, 2023, DOI:10.32604/cmc.2023.039644 - 30 August 2023

    Abstract Autism spectrum disorder (ASD) can be defined as a neurodevelopmental condition or illness that can disturb kids who have heterogeneous characteristics, like changes in behavior, social disabilities, and difficulty communicating with others. Eye tracking (ET) has become a useful method to detect ASD. One vital aspect of moral erudition is the aptitude to have common visual attention. The eye-tracking approach offers valuable data regarding the visual behavior of children for accurate and early detection. Eye-tracking data can offer insightful information about the behavior and thought processes of people with ASD, but it is important to… More >

  • Open Access

    ARTICLE

    Visual Motion Segmentation in Crowd Videos Based on Spatial-Angular Stacked Sparse Autoencoders

    Adel Hafeezallah1, Ahlam Al-Dhamari2,3,*, Syed Abd Rahman Abu-Bakar2

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 593-611, 2023, DOI:10.32604/csse.2023.039479 - 26 May 2023

    Abstract Visual motion segmentation (VMS) is an important and key part of many intelligent crowd systems. It can be used to figure out the flow behavior through a crowd and to spot unusual life-threatening incidents like crowd stampedes and crashes, which pose a serious risk to public safety and have resulted in numerous fatalities over the past few decades. Trajectory clustering has become one of the most popular methods in VMS. However, complex data, such as a large number of samples and parameters, makes it difficult for trajectory clustering to work well with accurate motion segmentation… More >

  • Open Access

    ARTICLE

    Abnormal Crowd Behavior Detection Using Optimized Pyramidal Lucas-Kanade Technique

    G. Rajasekaran1,*, J. Raja Sekar2

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 2399-2412, 2023, DOI:10.32604/iasc.2023.029119 - 19 July 2022

    Abstract Abnormal behavior detection is challenging and one of the growing research areas in computer vision. The main aim of this research work is to focus on panic and escape behavior detections that occur during unexpected/uncertain events. In this work, Pyramidal Lucas Kanade algorithm is optimized using EMEHOs to achieve the objective. First stage, OPLKT-EMEHOs algorithm is used to generate the optical flow from MIIs. Second stage, the MIIs optical flow is applied as input to 3 layer CNN for detect the abnormal crowd behavior. University of Minnesota (UMN) dataset is used to evaluate the proposed More >

  • Open Access

    ARTICLE

    Game Outlier Behavior Detection System Based on Dynamic Time Warp Algorithm

    Shinjin Kang1, Soo Kyun Kim2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.1, pp. 219-237, 2022, DOI:10.32604/cmes.2022.018413 - 24 January 2022

    Abstract This paper proposes a methodology for using multi-modal data in gameplay to detect outlier behavior. The proposed methodology collects, synchronizes, and quantifies time-series data from webcams, mouses, and keyboards. Facial expressions are varied on a one-dimensional pleasure axis, and changes in expression in the mouth and eye areas are detected separately. Furthermore, the keyboard and mouse input frequencies are tracked to determine the interaction intensity of users. Then, we apply a dynamic time warp algorithm to detect outlier behavior. The detected outlier behavior graph patterns were the play patterns that the game designer did not More >

  • Open Access

    ARTICLE

    Brain Storm Optimization Based Clustering for Learning Behavior Analysis

    Yu Xue1,2,*, Jiafeng Qin1, Shoubao Su2, Adam Slowik3

    Computer Systems Science and Engineering, Vol.39, No.2, pp. 211-219, 2021, DOI:10.32604/csse.2021.016693 - 20 July 2021

    Abstract Recently, online learning platforms have proven to help people gain knowledge more conveniently. Since the outbreak of COVID-19 in 2020, online learning has become a mainstream mode, as many schools have adopted its format. The platforms are able to capture substantial data relating to the students’ learning activities, which could be analyzed to determine relationships between learning behaviors and study habits. As such, an intelligent analysis method is needed to process efficiently this high volume of information. Clustering is an effect data mining method which discover data distribution and hidden characteristic from uncharacterized online learning More >

  • Open Access

    ARTICLE

    Outlier Behavior Detection for Indoor Environment Based on t-SNE Clustering

    Shinjin Kang1, Soo Kyun Kim2,*

    CMC-Computers, Materials & Continua, Vol.68, No.3, pp. 3725-3736, 2021, DOI:10.32604/cmc.2021.016828 - 06 May 2021

    Abstract In this study, we propose a low-cost system that can detect the space outlier utilization of residents in an indoor environment. We focus on the users’ app usage to analyze unusual behavior, especially in indoor spaces. This is reflected in the behavioral analysis in that the frequency of using smartphones in personal spaces has recently increased. Our system facilitates autonomous data collection from mobile app logs and Google app servers and generates a high-dimensional dataset that can detect outlier behaviors. The density-based spatial clustering of applications with noise (DBSCAN) algorithm was applied for effective singular… More >

Displaying 1-10 on page 1 of 17. Per Page