Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (39)
  • Open Access

    ARTICLE

    AUV Global Security Path Planning Based on a Potential Field Bio-Inspired Neural Network in Underwater Environment

    Xiang Cao1,2,*, Ling Chen1, Liqiang Guo3, Wei Han4

    Intelligent Automation & Soft Computing, Vol.27, No.2, pp. 391-407, 2021, DOI:10.32604/iasc.2021.01002 - 18 January 2021

    Abstract As one of the classical problems in autonomous underwater vehicle (AUV) research, path planning has obtained a lot of research results. Many studies have focused on planning an optimal path for AUVs. These optimal paths are sometimes too close to obstacles. In the real environment, it is difficult for AUVs to avoid obstacles according to such an optimal path. To solve the safety problem of AUV path planning in a dynamic uncertain environment, an algorithm combining a bio-inspired neural network and potential field is proposed. Based on the environmental information, the bio-inspired neural network plans More >

  • Open Access

    ARTICLE

    A Bio-Inspired Routing Optimization in UAV-enabled Internet of Everything

    Masood Ahmad1, Fasee Ullah2,*, Ishtiaq Wahid1, Atif Khan3, M. Irfan Uddin4, Abdullah Alharbi5, Wael Alosaimi5

    CMC-Computers, Materials & Continua, Vol.67, No.1, pp. 321-336, 2021, DOI:10.32604/cmc.2021.014102 - 12 January 2021

    Abstract Internet of Everything (IoE) indicates a fantastic vision of the future, where everything is connected to the internet, providing intelligent services and facilitating decision making. IoE is the collection of static and moving objects able to coordinate and communicate with each other. The moving objects may consist of ground segments and flying segments. The speed of flying segment e.g., Unmanned Ariel Vehicles (UAVs) may high as compared to ground segment objects. The topology changes occur very frequently due to high speed nature of objects in UAV-enabled IoE (Ue-IoE). The routing maintenance overhead may increase when… More >

  • Open Access

    ARTICLE

    Deep Learning Based Optimal Multimodal Fusion Framework for Intrusion Detection Systems for Healthcare Data

    Phong Thanh Nguyen1, Vy Dang Bich Huynh2, Khoa Dang Vo1, Phuong Thanh Phan1, Mohamed Elhoseny3, Dac-Nhuong Le4,5,*

    CMC-Computers, Materials & Continua, Vol.66, No.3, pp. 2555-2571, 2021, DOI:10.32604/cmc.2021.012941 - 28 December 2020

    Abstract Data fusion is a multidisciplinary research area that involves different domains. It is used to attain minimum detection error probability and maximum reliability with the help of data retrieved from multiple healthcare sources. The generation of huge quantity of data from medical devices resulted in the formation of big data during which data fusion techniques become essential. Securing medical data is a crucial issue of exponentially-pacing computing world and can be achieved by Intrusion Detection Systems (IDS). In this regard, since singular-modality is not adequate to attain high detection rate, there is a need exists… More >

  • Open Access

    ARTICLE

    Sliding-Mode Control of Unmanned Underwater Vehicle Using Bio-Inspired Neurodynamics for Discrete Trajectories

    Zhigang Deng1,*, Zhenzhong Chu2, Zaman Mohammed Tousif3

    Intelligent Automation & Soft Computing, Vol.26, No.6, pp. 1503-1515, 2020, DOI:10.32604/iasc.2020.010798 - 24 December 2020

    Abstract Trajectory tracking control can be considered as one of the main researches of unmanned underwater vehicles (UUV). The bio-inspired neurodynamics model was used to make the output continuous and smooth for the inflection points to deal with the speed jump of the conventional tracking controller for discrete trajectories. A horizon-plane trajectory tracking control law is designed using the bio-inspired neurodynamics model and sliding-mode method without chattering. Finally, the simulation of the mentioned two methods is compared with the results showing this as effective and feasible. More >

  • Open Access

    ARTICLE

    Dynamic Task Assignment for Multi-AUV Cooperative Hunting

    Xiang Cao1,2,3, Haichun Yu1,3, Hongbing Sun1,3

    Intelligent Automation & Soft Computing, Vol.25, No.1, pp. 25-34, 2019, DOI:10.31209/2018.100000038

    Abstract For cooperative hunting by a multi-AUV (multiple autonomous underwater vehicles) team, not only basic problems such as path planning and collision avoidance should be considered but also task assignments in a dynamic way. In this paper, an integrated algorithm is proposed by combining the self-organizing map (SOM) neural network and the Glasius Bio-Inspired Neural Network (GBNN) approach to improve the efficiency of multi-AUV cooperative hunting. With this integrated algorithm, the SOM neural network is adopted for dynamic allocation, while the GBNN is employed for path planning. It deals with various situations for single/multiple target(s) hunting More >

  • Open Access

    ARTICLE

    Parkinson’s Disease Detection Using Biogeography-Based Optimization

    Somayeh Hessam1, Shaghayegh Vahdat1, Irvan Masoudi Asl2,*, Mahnaz Kazemipoor3, Atefeh Aghaei4, Shahaboddin Shamshirband,5,6,*, Timon Rabczuk7

    CMC-Computers, Materials & Continua, Vol.61, No.1, pp. 11-26, 2019, DOI:10.32604/cmc.2019.06472

    Abstract In recent years, Parkinson's Disease (PD) as a progressive syndrome of the nervous system has become highly prevalent worldwide. In this study, a novel hybrid technique established by integrating a Multi-layer Perceptron Neural Network (MLP) with the Biogeography-based Optimization (BBO) to classify PD based on a series of biomedical voice measurements. BBO is employed to determine the optimal MLP parameters and boost prediction accuracy. The inputs comprised of 22 biomedical voice measurements. The proposed approach detects two PD statuses: 0-disease status and 1- good control status. The performance of proposed methods compared with PSO, GA, More >

  • Open Access

    ARTICLE

    Structure from Motion Using Bio-Inspired Intelligence Algorithm and Conformal Geometric Algebra

    Nancy Arana-Daniel, Carlos Villaseñor, Carlos López-Franco, Alma Y. Alanís, Roberto Valencia-Murillo

    Intelligent Automation & Soft Computing, Vol.24, No.3, pp. 461-467, 2018, DOI:10.1080/10798587.2017.1299356

    Abstract Structure from Motion algorithms offer good advantages, such as extract 3D information in monocular systems and structures estimation as shown in Hartley & Zisserman for numerous applications, for instance; augmented reality, autonomous navigation, motion capture, remote sensing and object recognition among others. Nevertheless, this algorithm suffers some weaknesses in precision. In the present work, we extent the proposal in Arana-Daniel, Villaseñor, López-Franco, & Alanís that presents a new strategy using bio-inspired intelligence algorithm and Conformal Geometric Algebra, based in the object mapping paradigm, to overcome the accuracy problem in two-view Structure form motion algorithms. For More >

  • Open Access

    ARTICLE

    A Bio-Inspired Global Finite Time Tracking Control of Four-Rotor Test Bench System

    Rooh ul Amin1, Irum Inayat2, Li Aijun1, Shahaboddin Shamshirband3,4,*, Timon Rabczuk5

    CMC-Computers, Materials & Continua, Vol.57, No.3, pp. 365-388, 2018, DOI:10.32604/cmc.2018.03757

    Abstract A bio-inspired global finite time control using global fast-terminal sliding mode controller and radial basis function network is presented in this article, to address the attitude tracking control problem of the three degree-of-freedom four-rotor hover system. The proposed controller provides convergence of system states in a pre-determined finite time and estimates the unmodeled dynamics of the four-rotor system. Dynamic model of the four-rotor system is derived with Newton’s force equations. The unknown dynamics of four-rotor systems are estimated using Radial basis function. The bio-inspired global fast terminal sliding mode controller is proposed to provide chattering… More >

  • Open Access

    ARTICLE

    Derivation of the Stress-Strain Behavior of the constituents of Bio-Inspired Layered TiO2/PE-Nanocomposites by Inverse Modeling Based on FE-Simulations of Nanoindentation Test

    G. Lasko, I. Schäfer, Z. Burghard, J. Bill, S. Schmauder, U. Weber, D. Galler

    Molecular & Cellular Biomechanics, Vol.10, No.1, pp. 27-42, 2013, DOI:10.3970/mcb.2013.010.027

    Abstract Owing to the apparent simple morphology and peculiar properties, nacre, an iridescent layer, coating of the inner part of mollusk shells, has attracted considerable attention of biologists, material scientists and engineers. The basic structural motif in nacre is the assembly of oriented plate-like aragonite crystals with a ’brick’ (CaCO3 crystals) and ’mortar’ (macromolecular components like proteins) organization. Many scientific researchers recognize that such structures are associated with the excellent mechanical properties of nacre and biomimetic strategies have been proposed to produce new layered nanocomposites. During the past years, increasing efforts have been devoted towards exploiting nacre’s… More >

Displaying 31-40 on page 4 of 39. Per Page