Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (127)
  • Open Access

    ARTICLE

    Research on Driver’s Fatigue Detection Based on Information Fusion

    Meiyan Zhang1, Boqi Zhao1, Jipu Li2, Qisong Wang1,*, Dan Liu1, Jinwei Sun1, Jingxiao Liao1,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1039-1061, 2024, DOI:10.32604/cmc.2024.048643

    Abstract Driving fatigue is a physiological phenomenon that often occurs during driving. After the driver enters a fatigued state, the attention is lax, the response is slow, and the ability to deal with emergencies is significantly reduced, which can easily cause traffic accidents. Therefore, studying driver fatigue detection methods is significant in ensuring safe driving. However, the fatigue state of actual drivers is easily interfered with by the external environment (glasses and light), which leads to many problems, such as weak reliability of fatigue driving detection. Moreover, fatigue is a slow process, first manifested in physiological signals and then reflected in… More >

  • Open Access

    REVIEW

    Targeting brain tumors with innovative nanocarriers: bridging the gap through the blood-brain barrier

    KARAN WADHWA1, PAYAL CHAUHAN1, SHOBHIT KUMAR2, RAKESH PAHWA3,*, RAVINDER VERMA4, RAJAT GOYAL5, GOVIND SINGH1, ARCHANA SHARMA6, NEHA RAO3, DEEPAK KAUSHIK1,*

    Oncology Research, Vol.32, No.5, pp. 877-897, 2024, DOI:10.32604/or.2024.047278

    Abstract Background: Glioblastoma multiforme (GBM) is recognized as the most lethal and most highly invasive tumor. The high likelihood of treatment failure arises from the presence of the blood-brain barrier (BBB) and stem cells around GBM, which avert the entry of chemotherapeutic drugs into the tumor mass. Objective: Recently, several researchers have designed novel nanocarrier systems like liposomes, dendrimers, metallic nanoparticles, nanodiamonds, and nanorobot approaches, allowing drugs to infiltrate the BBB more efficiently, opening up innovative avenues to prevail over therapy problems and radiation therapy. Methods: Relevant literature for this manuscript has been collected from a comprehensive and systematic search of… More > Graphic Abstract

    Targeting brain tumors with innovative nanocarriers: bridging the gap through the blood-brain barrier

  • Open Access

    REVIEW

    Estrogen-related receptor alpha: A novel perspective on skeletal, muscular, and vascular systems

    LEI WANG1,2, ZHI-HANG WANG1, NIAN-PING CAO1, BOBO CHEN1, CHONG-JUN HUANG1, LEI YANG1, YE TIAN1,*

    BIOCELL, Vol.48, No.2, pp. 191-203, 2024, DOI:10.32604/biocell.2023.045349

    Abstract Estrogen-related receptor alpha can significantly affect cell metabolism and play key regulatory roles in healthy and diseased organisms. ERRα is also related to the onset and progression of various cancer types. ERRα is primarily expressed in metabolically active tissues and regulates the transcription of metabolic genes in such tissues. It coordinates metabolism and energy demand, affects osteoblasts, osteoclasts, and chondrocytes, promotes muscle regeneration, participates in angiogenesis, and regulates cell aging. In this study, the literature related to the identification of ERRα in skeletal, muscular, and vascular systems was reviewed to further elucidate this receptor. More >

  • Open Access

    ARTICLE

    Folic Acid-Functionalized Nanocrystalline Cellulose as a Renewable and Biocompatible Nanomaterial for Cancer-Targeting Nanoparticles

    Thean Heng Tan1, Najihah Mohd Hashim2, Wageeh Abdulhadi Yehya Dabdawb1, Mochamad Zakki Fahmi3,*, Hwei Voon Lee1,*

    Journal of Renewable Materials, Vol.12, No.1, pp. 29-43, 2024, DOI:10.32604/jrm.2023.043449

    Abstract The study focuses on the development of biocompatible and stable FA-functionalized nanocrystalline cellulose (NCC) as a potential drug delivery system for targeting folate receptor-positive cancer cells. The FA-functionalized NCCs were synthesized through a series of chemical reactions, resulting in nanoparticles with favorable properties for biomedical applications. The microstructural analysis revealed that the functionalized NCCs maintained their rod-shaped morphology and displayed hydrodynamic diameters suitable for evading the mononuclear phagocytic system while being large enough to target tumor tissues. Importantly, these nanoparticles possessed a negative surface charge, enhancing their stability and repelling potential aggregation. The binding specificity of FA-functionalized NCCs to folate… More > Graphic Abstract

    Folic Acid-Functionalized Nanocrystalline Cellulose as a Renewable and Biocompatible Nanomaterial for Cancer-Targeting Nanoparticles

  • Open Access

    ARTICLE

    Radiative Blood-Based Hybrid Copper-Graphene Nanoliquid Flows along a Source-Heated Leaning Cylinder

    Siti Nur Ainsyah Ghani1, Noor Fadiya Mohd Noor1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 1017-1037, 2024, DOI:10.32604/cmes.2023.031372

    Abstract Variant graphene, graphene oxides (GO), and graphene nanoplatelets (GNP) dispersed in blood-based copper (Cu) nanoliquids over a leaning permeable cylinder are the focus of this study. These forms of graphene are highly beneficial in the biological and medical fields for cancer therapy, anti-infection measures, and drug delivery. The non-Newtonian Sutterby (blood-based) hybrid nanoliquid flows are generalized within the context of the Tiwari-Das model to simulate the effects of radiation and heating sources. The governing partial differential equations are reformulated into a nonlinear set of ordinary differential equations using similar transformational expressions. These equations are then transformed into boundary value problems… More >

  • Open Access

    ARTICLE

    CFD Study on Hemodynamic Characteristics of Inferior Vena Cava Filter Affected by Blood Vessel Diameter

    Shiyue Zhang1, Xue Song1,2, Jingying Wang1,*, Wen Huang3,*, Yue Zhou4, Mingrui Li1

    Molecular & Cellular Biomechanics, Vol.20, No.2, pp. 81-94, 2023, DOI:10.32604/mcb.2023.044445

    Abstract Pulmonary embolism (PE), caused by deep venous thrombosis (DVT), is a disease with high morbidity and mortality. Implantation of inferior vena cava filters is an important method for the clinical prevention of PE. The hemodynamic characteristics of filters implanted in the inferior vena cava (IVC) have a significant impact on their performance. However, IVC diameters vary among patients. This may have a direct impact on the hemodynamic properties of the filter. At present, there is no research on this kind of problem to be investigated. In this paper, the hemodynamic properties of the VenaTech convertible filter were simulated in three… More > Graphic Abstract

    CFD Study on Hemodynamic Characteristics of Inferior Vena Cava Filter Affected by Blood Vessel Diameter

  • Open Access

    ARTICLE

    Intraoperative Blood Glucose Levels and Postoperative Acute Kidney Injury in Pediatric Patients Having Congenital Heart Surgery under Cardiopulmonary Bypass

    Dongyun Bie1,#, Hongbai Wang1,#, Chaobin Zhang2, Chunrong Wang3, Yuan Jia1, Su Yuan1, Sheng Shi1, Jiangshan Huang1, Jianhui Wang1,*, Fuxia Yan1,*

    Congenital Heart Disease, Vol.18, No.4, pp. 475-488, 2023, DOI:10.32604/chd.2023.028017

    Abstract Purpose: This study sought to explore the effect of intraoperative mean blood glucose levels and variability on postoperative acute kidney injury (AKI) in children undergoing congenital cardiac surgery. Methods: We conducted a prospective nested case-control study in children (age < 18 years) undergoing congenital heart surgery with cardiopulmonary bypass (CPB) at the Fuwai Hospital between April 01, 2022 and July 30, 2022. Cases were individuals who developed AKI within the first postoperative 7 days (AKI group) and controls were those without AKI (Non-AKI group) according to KDIGO criteria. AKI and Non-AKI groups unmatched and 1:1 matched by age, sex, and baseline serum… More > Graphic Abstract

    Intraoperative Blood Glucose Levels and Postoperative Acute Kidney Injury in Pediatric Patients Having Congenital Heart Surgery under Cardiopulmonary Bypass

  • Open Access

    PROCEEDINGS

    Fluid-Structure Interaction in Arterial Network and Implications for Blood Pressure Measurement– A Numerical Study

    Peishuo Wu1, Chi Zhu1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.1, pp. 1-2, 2023, DOI: 10.32604/icces.2023.09869

    Abstract Central blood pressure, i.e., the blood pressure near the heart, is an important physiological indicator of the cardiovascular function of a patient. However, direct measurement of this quantity is rarely carried out due to the invasive nature of the procedure. Instead, blood pressure at the arm (brachial artery) measured through an inflatable cuff is commonly used to represent or estimate the central blood pressure. On the other hand, the aortic pressure propagates downstream in the form of pulse waves, which have to pass through a complex and compliant vascular network to reach the brachial artery. Therefore, the efficacy of cuff-measured… More >

  • Open Access

    ARTICLE

    Biochanin A, as the Lrg1/TGF-β/Smad2 pathway blockade, attenuates blood-brain barrier damage after cerebral ischemia-reperfusion by modulating leukocyte migration patterns

    LONGSHENG FU1, JINFANG HU1, FENG SHAO2, YAOQI WU1, WEI BAI3, MINGJIN JIANG3, HAO CHEN4, LIHUA CHEN2, YANNI LV1,*

    BIOCELL, Vol.47, No.8, pp. 1869-1883, 2023, DOI:10.32604/biocell.2023.028602

    Abstract Background: Biochanin A is an excellent dietary isoflavone that has the concomitant function of both medicine and foodstuff. The attenuation function of biochanin A on blood-brain barrier (BBB) damage induced by cerebral ischemia-reperfusion remains unclear. Methods: C57BL/6 mice were subjected to 1 h middle cerebral artery occlusion (MCAO) followed by 24 h reperfusion. The infarct volume of the brain was stained by TTC, while leakage of the brain was quantitatively stained by Evans blue, and the neurologic deficit score was measured. Microglial-induced morphologic changes were observed via immunofluorescence staining, and rolling and adhering leukocytes in venules were observed via two-photon… More >

  • Open Access

    ARTICLE

    MAGNETOHYDRO DYNAMIC FLOW OF BLOOD IN A PERMEABLE INCLINED STRETCHING SURFACE WITH VISCOUS DISSIPATION, NON-UNIFORM HEAT SOURCE/SINK AND CHEMICAL REACTION

    S.R.R. Reddya , P. Bala Anki Reddya,*, S. Suneethab

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-10, 2018, DOI:10.5098/hmt.10.22

    Abstract Present work aims to investigate the blood stream in a permeable vessel in the presence of an external magnetic field with heat and mass transfer. The instability in the coupled flow and temperature fields is considered to be produced due to the time-dependent extending velocity and the surface temperature of the vessel. The non-uniform heat source/sink effects on a chemically responded blood stream and heat viscous. This study is of potential value in the clinical healing of cardiovascular disorders accompanied by accelerated circulation. The problem is treated mathematically by reducing it to a system of joined non-linear differential equations, which… More >

Displaying 1-10 on page 1 of 127. Per Page