KARAN WADHWA1, PAYAL CHAUHAN1, SHOBHIT KUMAR2, RAKESH PAHWA3,*, RAVINDER VERMA4, RAJAT GOYAL5, GOVIND SINGH1, ARCHANA SHARMA6, NEHA RAO3, DEEPAK KAUSHIK1,*
Oncology Research, Vol.32, No.5, pp. 877-897, 2024, DOI:10.32604/or.2024.047278
Abstract Background: Glioblastoma multiforme (GBM) is recognized as the most lethal and most highly invasive tumor. The high likelihood of treatment failure arises from the presence of the blood-brain barrier (BBB) and stem cells around GBM, which avert the entry of chemotherapeutic drugs into the tumor mass. Objective: Recently, several researchers have designed novel nanocarrier systems like liposomes, dendrimers, metallic nanoparticles, nanodiamonds, and nanorobot approaches, allowing drugs to infiltrate the BBB more efficiently, opening up innovative avenues to prevail over therapy problems and radiation therapy. Methods: Relevant literature for this manuscript has been collected from a comprehensive More >
Graphic Abstract