Kasidit Kokkhunthod1, Khomdet Phapatanaburi2, Wongsathon Pathonsuwan1, Talit Jumphoo1, Patikorn Anchuen3, Porntip Nimkuntod4, Monthippa Uthansakul1, Peerapong Uthansakul1,*
CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 1775-1794, 2024, DOI:10.32604/cmc.2024.049276
Abstract Monitoring blood pressure is a critical aspect of safeguarding an individual’s health, as early detection of abnormal blood pressure levels facilitates timely medical intervention, ultimately leading to a reduction in mortality rates associated with cardiovascular diseases. Consequently, the development of a robust and continuous blood pressure monitoring system holds paramount significance. In the context of this research paper, we introduce an innovative deep learning regression model that harnesses phonocardiogram (PCG) data to achieve precise blood pressure estimation. Our novel approach incorporates a convolutional neural network (CNN)-based regression model, which not only enhances its adaptability to… More >