Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (61)
  • Open Access

    ARTICLE

    A Study on the Inter-Pretability of Network Attack Prediction Models Based on Light Gradient Boosting Machine (LGBM) and SHapley Additive exPlanations (SHAP)

    Shuqin Zhang1, Zihao Wang1,*, Xinyu Su2

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5781-5809, 2025, DOI:10.32604/cmc.2025.062080 - 19 May 2025

    Abstract The methods of network attacks have become increasingly sophisticated, rendering traditional cybersecurity defense mechanisms insufficient to address novel and complex threats effectively. In recent years, artificial intelligence has achieved significant progress in the field of network security. However, many challenges and issues remain, particularly regarding the interpretability of deep learning and ensemble learning algorithms. To address the challenge of enhancing the interpretability of network attack prediction models, this paper proposes a method that combines Light Gradient Boosting Machine (LGBM) and SHapley Additive exPlanations (SHAP). LGBM is employed to model anomalous fluctuations in various network indicators,… More >

  • Open Access

    ARTICLE

    A Barrier-Based Machine Learning Approach for Intrusion Detection in Wireless Sensor Networks

    Haydar Abdulameer Marhoon1,2,*, Rafid Sagban3,4, Atheer Y. Oudah1,5, Saadaldeen Rashid Ahmed6,7

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4181-4218, 2025, DOI:10.32604/cmc.2025.058822 - 06 March 2025

    Abstract In order to address the critical security challenges inherent to Wireless Sensor Networks (WSNs), this paper presents a groundbreaking barrier-based machine learning technique. Vital applications like military operations, healthcare monitoring, and environmental surveillance increasingly deploy WSNs, recognizing the critical importance of effective intrusion detection in protecting sensitive data and maintaining operational integrity. The proposed method innovatively partitions the network into logical segments or virtual barriers, allowing for targeted monitoring and data collection that aligns with specific traffic patterns. This approach not only improves the diversit. There are more types of data in the training set,… More >

  • Open Access

    ARTICLE

    XGBoost-Based Power Grid Fault Prediction with Feature Enhancement: Application to Meteorology

    Kai Liu1, Meizhao Liu1, Ming Tang1, Chen Zhang2,*, Junwu Zhu2,3,*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2893-2908, 2025, DOI:10.32604/cmc.2024.057074 - 17 February 2025

    Abstract The prediction of power grid faults based on meteorological factors is of great significance to reduce economic losses caused by power grid faults. However, the existing methods fail to effectively extract key features and accurately predict fault types due to the complexity of meteorological factors and their nonlinear relationships. In response to these challenges, we propose the Feature-Enhanced XGBoost power grid fault prediction method (FE-XGBoost). Specifically, we first combine the gradient boosting decision tree and recursive feature elimination method to extract essential features from meteorological data. Then, we incorporate a piecewise linear chaotic map to More >

  • Open Access

    ARTICLE

    Enhancing Network Security: Leveraging Machine Learning for Integrated Protection and Intrusion Detection

    Nada Mohammed Murad1, Adnan Yousif Dawod2, Saadaldeen Rashid Ahmed3,4,*, Ravi Sekhar5, Pritesh Shah5

    Intelligent Automation & Soft Computing, Vol.40, pp. 1-27, 2025, DOI:10.32604/iasc.2024.058624 - 10 January 2025

    Abstract This study introduces an innovative hybrid approach that integrates deep learning with blockchain technology to improve cybersecurity, focusing on network intrusion detection systems (NIDS). The main goal is to overcome the shortcomings of conventional intrusion detection techniques by developing a more flexible and robust security architecture. We use seven unique machine learning models to improve detection skills, emphasizing data quality, traceability, and transparency, facilitated by a blockchain layer that safeguards against data modification and ensures auditability. Our technique employs the Synthetic Minority Oversampling Technique (SMOTE) to equilibrate the dataset, therefore mitigating prevalent class imbalance difficulties… More >

  • Open Access

    ARTICLE

    IDSSCNN-XgBoost: Improved Dual-Stream Shallow Convolutional Neural Network Based on Extreme Gradient Boosting Algorithm for Micro Expression Recognition

    Adnan Ahmad, Zhao Li*, Irfan Tariq, Zhengran He

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 729-749, 2025, DOI:10.32604/cmc.2024.055768 - 03 January 2025

    Abstract Micro-expressions (ME) recognition is a complex task that requires advanced techniques to extract informative features from facial expressions. Numerous deep neural networks (DNNs) with convolutional structures have been proposed. However, unlike DNNs, shallow convolutional neural networks often outperform deeper models in mitigating overfitting, particularly with small datasets. Still, many of these methods rely on a single feature for recognition, resulting in an insufficient ability to extract highly effective features. To address this limitation, in this paper, an Improved Dual-stream Shallow Convolutional Neural Network based on an Extreme Gradient Boosting Algorithm (IDSSCNN-XgBoost) is introduced for ME… More >

  • Open Access

    REVIEW

    Exploring Metal Based Nanoparticles for Boosting Plant Tolerance to Heavy Metals and Trace Element Contamination

    Abdul Ghafoor1, Maria Latif2, Shafaqat Ali2,3,*, Muhammad Munir4,*, Muhammad Naeem Sattar5, Mohammed Ali Alshehri6

    Phyton-International Journal of Experimental Botany, Vol.93, No.11, pp. 2683-2705, 2024, DOI:10.32604/phyton.2024.055898 - 30 November 2024

    Abstract Heavy metal pollution in agricultural soils is a significant challenge for global food production and human health with the increasing industrialization and urbanization. There is a concern about introducing innovative techniques that are eco-friendly, cost-effective, and have the potential to alleviate metals, enhance crop growth, and protect plants against various environmental threats. For this, nanotechnology is one of the promising solutions having various applications in almost every field of life. This review explores various nano-based strategies that use nanoparticles (NPs) to lessen the harmful effects that heavy metals have on plants. Incorporated literature including published… More >

  • Open Access

    ARTICLE

    Cyberbullying Sexism Harassment Identification by Metaheurustics-Tuned eXtreme Gradient Boosting

    Milos Dobrojevic1,4, Luka Jovanovic1, Lepa Babic3, Miroslav Cajic5, Tamara Zivkovic6, Miodrag Zivkovic2, Suresh Muthusamy7, Milos Antonijevic2, Nebojsa Bacanin2,4,8,9,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4997-5027, 2024, DOI:10.32604/cmc.2024.054459 - 12 September 2024

    Abstract Cyberbullying is a form of harassment or bullying that takes place online or through digital devices like smartphones, computers, or tablets. It can occur through various channels, such as social media, text messages, online forums, or gaming platforms. Cyberbullying involves using technology to intentionally harm, harass, or intimidate others and may take different forms, including exclusion, doxing, impersonation, harassment, and cyberstalking. Unfortunately, due to the rapid growth of malicious internet users, this social phenomenon is becoming more frequent, and there is a huge need to address this issue. Therefore, the main goal of the research… More >

  • Open Access

    ARTICLE

    GliomaCNN: An Effective Lightweight CNN Model in Assessment of Classifying Brain Tumor from Magnetic Resonance Images Using Explainable AI

    Md. Atiqur Rahman1, Mustavi Ibne Masum1, Khan Md Hasib2, M. F. Mridha3,*, Sultan Alfarhood4, Mejdl Safran4,*, Dunren Che5

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2425-2448, 2024, DOI:10.32604/cmes.2024.050760 - 08 July 2024

    Abstract Brain tumors pose a significant threat to human lives and have gained increasing attention as the tenth leading cause of global mortality. This study addresses the pressing issue of brain tumor classification using Magnetic resonance imaging (MRI). It focuses on distinguishing between Low-Grade Gliomas (LGG) and High-Grade Gliomas (HGG). LGGs are benign and typically manageable with surgical resection, while HGGs are malignant and more aggressive. The research introduces an innovative custom convolutional neural network (CNN) model, Glioma-CNN. GliomaCNN stands out as a lightweight CNN model compared to its predecessors. The research utilized the BraTS 2020 More >

  • Open Access

    ARTICLE

    Uniaxial Compressive Strength Prediction for Rock Material in Deep Mine Using Boosting-Based Machine Learning Methods and Optimization Algorithms

    Junjie Zhao, Diyuan Li*, Jingtai Jiang, Pingkuang Luo

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 275-304, 2024, DOI:10.32604/cmes.2024.046960 - 16 April 2024

    Abstract Traditional laboratory tests for measuring rock uniaxial compressive strength (UCS) are tedious and time-consuming. There is a pressing need for more effective methods to determine rock UCS, especially in deep mining environments under high in-situ stress. Thus, this study aims to develop an advanced model for predicting the UCS of rock material in deep mining environments by combining three boosting-based machine learning methods with four optimization algorithms. For this purpose, the Lead-Zinc mine in Southwest China is considered as the case study. Rock density, P-wave velocity, and point load strength index are used as input variables,… More > Graphic Abstract

    Uniaxial Compressive Strength Prediction for Rock Material in Deep Mine Using Boosting-Based Machine Learning Methods and Optimization Algorithms

  • Open Access

    ARTICLE

    Improving Thyroid Disorder Diagnosis via Ensemble Stacking and Bidirectional Feature Selection

    Muhammad Armghan Latif1, Zohaib Mushtaq2, Saad Arif3, Sara Rehman4, Muhammad Farrukh Qureshi5, Nagwan Abdel Samee6, Maali Alabdulhafith6,*, Yeong Hyeon Gu7, Mohammed A. Al-masni7

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4225-4241, 2024, DOI:10.32604/cmc.2024.047621 - 26 March 2024

    Abstract Thyroid disorders represent a significant global health challenge with hypothyroidism and hyperthyroidism as two common conditions arising from dysfunction in the thyroid gland. Accurate and timely diagnosis of these disorders is crucial for effective treatment and patient care. This research introduces a comprehensive approach to improve the accuracy of thyroid disorder diagnosis through the integration of ensemble stacking and advanced feature selection techniques. Sequential forward feature selection, sequential backward feature elimination, and bidirectional feature elimination are investigated in this study. In ensemble learning, random forest, adaptive boosting, and bagging classifiers are employed. The effectiveness of… More >

Displaying 1-10 on page 1 of 61. Per Page