Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (74)
  • Open Access

    ARTICLE

    HCF-MFGB: Hybrid Collaborative Filtering Based on Matrix Factorization and Gradient Boosting

    Salahudin Robo1,2, Triyanna Widiyaningtyas1,*, Wahyu Sakti Gunawan Irianto1

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-19, 2026, DOI:10.32604/cmc.2025.073011 - 09 December 2025

    Abstract Recommendation systems are an integral and indispensable part of every digital platform, as they can suggest content or items to users based on their respective needs. Collaborative filtering is a technique often used in various studies, which produces recommendations by analyzing similarities between users and items based on their behavior. Although often used, traditional collaborative filtering techniques still face the main challenge of sparsity. Sparsity problems occur when the data in the system is sparse, meaning that only a portion of users provide feedback on some items, resulting in inaccurate recommendations generated by the system.… More >

  • Open Access

    ARTICLE

    ResghostNet: Boosting GhostNet with Residual Connections and Adaptive-SE Blocks

    Yuang Chen1,2, Yong Li1,*, Fang Lin1,2, Shuhan Lv1,2, Jiaze Jiang1,2

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-18, 2026, DOI:10.32604/cmc.2025.070990 - 09 December 2025

    Abstract Aiming at the problem of potential information noise introduced during the generation of ghost feature maps in GhostNet, this paper proposes a novel lightweight neural network model called ResghostNet. This model constructs the Resghost Module by combining residual connections and Adaptive-SE Blocks, which enhances the quality of generated feature maps through direct propagation of original input information and selection of important channels before cheap operations. Specifically, ResghostNet introduces residual connections on the basis of the Ghost Module to optimize the information flow, and designs a weight self-attention mechanism combined with SE blocks to enhance feature More >

  • Open Access

    ARTICLE

    Boosting power efficiency in polycrystalline silicon solar cells: antimony selenide sputter coating with advanced optical, electrical, and thermal insights

    R. M. Reddya, S. Chiragb, T. Anuc, A. R. Venkataramanand, S. Karthikeyane,*, D. Palaniswamyf, E. Venugopal Gouda, N. Dineshbabug, T. Thirugnanasambandhamh

    Chalcogenide Letters, Vol.22, No.7, pp. 615-624, 2025, DOI:10.15251/CL.2025.227.615

    Abstract Solar cells can transform light energy into electrical energy, possibly removing the need for fossil fuel energy resources. Reflection loss in solar cells is a factor contributing to diminished power conversion efficiency, which can be solved through using antireflective coatings on the cell surface. The present research primarily focuses on the development and application of antireflection coatings on the top surface of silicon solar cells. Sb2Se3 was deposited over multi-crystalline Si cells with different durations from 15 to 60 minutes. The influence of thin film Sb2Se3 coated cells was investigated through optical, current, voltage and thermal… More >

  • Open Access

    ARTICLE

    Advanced chalcogenide GaS3 coatings for reducing reflective loss and boosting efficiency in silicon photovoltaics

    R. M. Reddya, J. A. Prakashb, A. Tonkc, S. Karvendhand, G. Sivaramane, D. K. Patelf, S. P. Dillibabug, S. Karthikeyanh,*, T. Thirugnanasambandhami

    Chalcogenide Letters, Vol.22, No.9, pp. 797-806, 2025, DOI:10.15251/CL.2025.229.797

    Abstract The current situation necessitates advancements in renewable energy as an alternative for conventional energy sources. Reflection loss in solar cells is a contributing factor to diminish the power conversion efficiency, which can be reduced by employing antireflective coatings. The current investigation focuses on improvement in photocurrent generation of monocrystalline silicon solar cells by employing Gallium sulfide (GaS3) as anti-reflective coatings (ARC). The RF sputter coating method has been used for GaS3 deposition at different coating durations (10, 20, 30, and 40 minutes). The transmittance, reflectance, I-V characteristics, electrical properties, and thermal behaviour of the Ga2S3 coatings… More >

  • Open Access

    ARTICLE

    CdS nanoparticles-Loaded 1D attapulgite Composites for Boosting Photocatalytic Activity

    Xiaowang Lu1,*, Cheng Luo1, Xinyu Zhu1, Ziwen Gu1, Chen Da1, Junyan Zhou1, Junchao Qian2

    Chalcogenide Letters, Vol.22, No.11, pp. 987-995, 2025, DOI:10.15251/CL.2025.2211.987

    Abstract Attapulgite clay-supported CdS composites were synthesized via hydrothermal approach and applied to remove Rhodamine B (RhB). The structural, morphological, and physicochemical properties of the materials were systematically characterized by XRD, TEM, XPS, BET and UV-Vis DRS. The combination of CdS and attapulgite could enhance active site availability and surface area, thereby boosting photocatalytic activity.The optimized CdS/attapulgite composite demonstrated remarkable photocatalytic efficiency under visible-light illumination. In addition, a potential photocatalytic degradation mechanism by the composites was proposed. More >

  • Open Access

    ARTICLE

    Boosting Cybersecurity: A Zero-Day Attack Detection Approach Using Equilibrium Optimiser with Deep Learning Model

    Mona Almofarreh1, Amnah Alshahrani2, Nouf Helal Alharbi3, Ahmed Omer Ahmed4, Hussain Alshahrani5, Abdulrahman Alzahrani6,*, Mohammed Mujib Alshahrani7, Asma A. Alhashmi8

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2631-2656, 2025, DOI:10.32604/cmes.2025.070545 - 26 November 2025

    Abstract Zero-day attacks use unknown vulnerabilities that prevent being identified by cybersecurity detection tools. This study indicates that zero-day attacks have a significant impact on computer security. A conventional signature-based detection algorithm is not efficient at recognizing zero-day attacks, as the signatures of zero-day attacks are usually not previously accessible. A machine learning (ML)-based detection algorithm is proficient in capturing statistical features of attacks and, therefore, optimistic for zero-day attack detection. ML and deep learning (DL) are employed for designing intrusion detection systems. The improvement of absolute varieties of novel cyberattacks poses significant challenges for IDS… More >

  • Open Access

    ARTICLE

    GWO-LightGBM: A Hybrid Grey Wolf Optimized Light Gradient Boosting Model for Cyber-Physical System Security

    Adeel Munawar1, Muhammad Nadeem Ali2, Awais Qasim3, Byung-Seo Kim2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 1189-1211, 2025, DOI:10.32604/cmes.2025.071876 - 30 October 2025

    Abstract Cyber-physical systems (CPS) represent a sophisticated integration of computational and physical components that power critical applications such as smart manufacturing, healthcare, and autonomous infrastructure. However, their extensive reliance on internet connectivity makes them increasingly susceptible to cyber threats, potentially leading to operational failures and data breaches. Furthermore, CPS faces significant threats related to unauthorized access, improper management, and tampering of the content it generates. In this paper, we propose an intrusion detection system (IDS) optimized for CPS environments using a hybrid approach by combining a nature-inspired feature selection scheme, such as Grey Wolf Optimization (GWO),… More >

  • Open Access

    REVIEW

    Regenerative Agriculture: A Sustainable Path for Boosting Plant and Soil Health

    Lobna Hajji-Hedfi1,2,*, Omaima Bargougui1,3, Abdelhak Rhouma1, Takwa Wannassi1, Amira Khlif1,3, Samar Dali1,3, Wafa Gamaoun4

    Phyton-International Journal of Experimental Botany, Vol.94, No.8, pp. 2255-2284, 2025, DOI:10.32604/phyton.2025.066951 - 29 August 2025

    Abstract Fungal plant diseases are infections caused by pathogenic fungi that affect crops, ornamental plants, and trees. Symptoms of these diseases can include leaf spots, fruit rot, root rot, and generalized growth retardation. Fungal diseases can result in decreased quality and quantity of crops, which can have a negative economic impact on farmers and producers. Moreover, these diseases can cause environmental damage. Indeed, fungal diseases can directly affect crops by reducing plant growth and yield, as well as altering their quality and nutritional value. Although effective, the use of many chemical products is often harmful to… More >

  • Open Access

    ARTICLE

    CARE: Comprehensive Artificial Intelligence Techniques for Reliable Autism Evaluation in Pediatric Care

    Jihoon Moon1, Jiyoung Woo2,*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1383-1425, 2025, DOI:10.32604/cmc.2025.067784 - 29 August 2025

    Abstract Improving early diagnosis of autism spectrum disorder (ASD) in children increasingly relies on predictive models that are reliable and accessible to non-experts. This study aims to develop such models using Python-based tools to improve ASD diagnosis in clinical settings. We performed exploratory data analysis to ensure data quality and identify key patterns in pediatric ASD data. We selected the categorical boosting (CatBoost) algorithm to effectively handle the large number of categorical variables. We used the PyCaret automated machine learning (AutoML) tool to make the models user-friendly for clinicians without extensive machine learning expertise. In addition,… More >

  • Open Access

    ARTICLE

    Boosting Structural and Dielectric Properties of Polyvinyl Alcohol/Starch/Carboxymethyl Cellulose Films with Iron-Doped Carbon Quantum Dots for Advanced Applications

    Lekaa K. Abdul Karem1, Badriah Saad Al-Farhan2, Ghada M. G. Eldin3, Samir Kamel4, Ahmed M. Khalil5,*

    Journal of Renewable Materials, Vol.13, No.7, pp. 1459-1473, 2025, DOI:10.32604/jrm.2025.02025-0046 - 22 July 2025

    Abstract In this study, the casting process is used to fabricate modified polyvinyl alcohol (PVA), starch (S), and carboxymethyl cellulose (CMC) polymer blend films (PVA/S/CMC) loaded with various concentrations of iron-doped carbon quantum dots (Fe-CQDs) and denoted as (PVA/S/CMC@Fe-CQDs). A one-step microwave strategy was employed as a facile method to prepare Fe-CQDs. Through a series of characterization techniques, fourier-transform infrared (FTIR) spectroscopy, x-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM) have been used to show the successful integration of Fe-CQDs into the PVA/S/CMC matrix. Loading the synthesized Fe-CQDs to the polymeric matrix significantly enhanced the… More > Graphic Abstract

    Boosting Structural and Dielectric Properties of Polyvinyl Alcohol/Starch/Carboxymethyl Cellulose Films with Iron-Doped Carbon Quantum Dots for Advanced Applications

Displaying 1-10 on page 1 of 74. Per Page