Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (23)
  • Open Access

    ARTICLE

    Fatigue Crack Propagation Law of Corroded Steel Box Girders in Long Span Bridges

    Ying Wang1,*, Longxiao Chao1, Jun Chen2, Songbai Jiang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 201-227, 2024, DOI:10.32604/cmes.2024.046129

    Abstract In order to investigate the fatigue performance of orthotropic anisotropic steel bridge decks, this study realizes the simulation of the welding process through elastic-plastic finite element theory, thermal-structural sequential coupling, and the birth-death element method. The simulated welding residual stresses are introduced into the multiscale finite element model of the bridge as the initial stress. Furthermore, the study explores the impact of residual stress on crack propagation in the fatigue-vulnerable components of the corroded steel box girder. The results indicate that fatigue cracks at the weld toe of the top deck, the weld root of the top deck, and the… More > Graphic Abstract

    Fatigue Crack Propagation Law of Corroded Steel Box Girders in Long Span Bridges

  • Open Access

    ARTICLE

    Dynamic Response Impact of Vehicle Braking on Simply Supported Beam Bridges with Corrugated Steel Webs Based on Vehicle-Bridge Coupled Vibration Analysis

    Yan Wang*, Siwen Li, Na Wei

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3467-3493, 2024, DOI:10.32604/cmes.2024.046454

    Abstract A novel approach for analyzing coupled vibrations between vehicles and bridges is presented, taking into account spatiotemporal effects and mechanical phenomena resulting from vehicle braking. Efficient modeling and solution of bridge vibrations induced by vehicle deceleration are realized using this method. The method’s validity and reliability are substantiated through numerical examples. A simply supported beam bridge with a corrugated steel web is taken as an example and the effects of parameters such as the initial vehicle speed, braking acceleration, braking location, and road surface roughness on the mid-span displacement and impact factor of the bridge are analyzed. The results show… More >

  • Open Access

    ARTICLE

    An Analysis of the Dynamic Behavior of Damaged Reinforced Concrete Bridges under Moving Vehicle Loads by Using the Moving Mesh Technique

    Fabrizio Greco*, Paolo Lonetti, Arturo Pascuzzo, Giulia Sansone

    Structural Durability & Health Monitoring, Vol.17, No.6, pp. 457-483, 2023, DOI:10.32604/sdhm.2023.030075

    Abstract This work proposes a numerical investigation on the effects of damage on the structural response of Reinforced Concrete (RC) bridge structures commonly adopted in highway and railway networks. An effective three-dimensional FE-based numerical model is developed to analyze the bridge’s structural response under several damage scenarios, including the effects of moving vehicle loads. In particular, the longitudinal and transversal beams are modeled through solid finite elements, while horizontal slabs are made of shell elements. Damage phenomena are also incorporated in the numerical model according to a smeared approach consistent with Continuum Damage Mechanics (CDM). In such a context, the proposed… More >

  • Open Access

    ARTICLE

    Process Monitoring and Terminal Verification of Cable-Stayed Bridges with Corrugated Steel Webs under Contruction

    Kexin Zhang, Xinyuan Shen, Longsheng Bao, He Liu*

    Structural Durability & Health Monitoring, Vol.17, No.2, pp. 131-158, 2023, DOI:10.32604/sdhm.2023.023431

    Abstract In this paper, the construction process of a cable-stayed bridge with corrugated steel webs was monitored. Moreover, the end performance of the bridge was verified by load test. Owing to the consideration of the bridge structure safety, it is necessary to monitor the main girder deflection, stress, construction error and safety state during construction. Furthermore, to verify whether the bridge can meet the design requirements, the static and dynamic load tests are carried out after the completion of the bridge. The results of construction monitoring show that the stress state of the structure during construction is basically consistent with the… More >

  • Open Access

    ARTICLE

    Development of IoT-Based Condition Monitoring System for Bridges

    Sheetal A. Singh, Suresh S. Balpande*

    Sound & Vibration, Vol.56, No.3, pp. 209-220, 2022, DOI:10.32604/sv.2022.014518

    Abstract As of April 2019, India has 1,42,126 kilometres of National Highways and 67,368 kilometres of railway tracks that reach even the most remote parts of the country. Bridges are critical for both passenger and freight movement in the country. Because bridges play such an important part in the transportation system, their safety and upkeep must be prioritized. Manual Condition Monitoring has the disadvantage of being sluggish, unreliable, and ineffi- cient. The Internet of Things has given structural monitoring a boost. Significant decreases in the cost of electronics and connection, together with the expansion of cloud platforms, have made it possible… More >

  • Open Access

    PROCEEDINGS

    Coupling Effects of the Ballast Track Infrastructure on the Dynamic Response of Structurally Independent Railway Bridges

    J.C. Sánchez‐Quesada1, A. Romero2, P. Galvín2,3, E. Moliner1, M.D. Martínez‐ Rodrigo1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.24, No.1, pp. 1-1, 2022, DOI:10.32604/icces.2022.08691

    Abstract This paper is devoted to track-bridge interaction phenomena in railway bridges of short simply-supported (SS) spans composed by ballasted tracks. These structures may experience high vertical acceleration levels under operating conditions. In particular, the coupling effect exerted by the ballast track shared by structural parts that are theoretically independent, such as consecutive simply-supported spans or twin adjacent single-track decks, is investigated. Experimental evidence shows that in these cases there may be an important vibration transmission from the loaded to the unloaded track, and that the interlocked ballast granules couple some of the lowest modes of vibration to an important extent.… More >

  • Open Access

    ARTICLE

    Free Vibration Analysis of RC Box-Girder Bridges Using FEM

    Preeti Agarwal*, Priyaranjan Pal, Pradeep Kumar Mehta

    Sound & Vibration, Vol.56, No.2, pp. 105-125, 2022, DOI:10.32604/sv.2022.014874

    Abstract The free vibration analysis of simply supported box-girder bridges is carried out using the finite element method. The fundamental frequency is determined in straight, skew, curved and skew-curved box-girder bridges. It is important to analyse the combined effect of skewness and curvature because skew-curved box-girder bridge behaviour cannot be predicted by simply adding the individual effects of skewness and curvature. At first, an existing model is considered to validate the present approach. A convergence study is carried out to decide the mesh size in the finite element method. An exhaustive parametric study is conducted to determine the fundamental frequency of… More >

  • Open Access

    ARTICLE

    Stability Reliability of the Lateral Vibration of Footbridges Based on the IEVIE-SA Method

    Buyu Jia, Siyi Mao, Quansheng Yan, Xiaolin Yu*

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.2, pp. 565-582, 2021, DOI:10.32604/cmes.2021.015183

    Abstract Research on the lateral vibrational stability of footbridges has attracted increasing attention in recent years. However, this stability contains a series of complex mechanisms, such as nonlinear vibration, random excitation, and random stability. The Lyapunov method is regarded as an effective tool for analyzing random vibrational stability; however, it is a qualitative method and can only provide a binary judgment for stability. This study proposes a new method, IEVIE–SA, which combines the energy method based on the comparison between the input energy and the variation of intrinsic energy (IEVIE) and the stochastic averaging (SA) method. The improved Nakamura model was… More >

  • Open Access

    ARTICLE

    Maximum Probabilistic and Dynamic Traffic Load Effects on Short-to-Medium Span Bridges

    Naiwei Lu1,*, Honghao Wang1, Kai Wang1, Yang Liu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.1, pp. 345-360, 2021, DOI:10.32604/cmes.2021.013792

    Abstract The steadily growing traffic load has resulted in lots of bridge collapse events over the past decades, especially for short-to-medium span bridges. This study investigated probabilistic and dynamic traffic load effects on short-to-medium span bridges using practical heavy traffic data in China. Mathematical formulations for traffic-bridge coupled vibration and probabilistic extrapolation were derived. A framework for extrapolating probabilistic and dynamic traffic load effect was presented to conduct an efficient and accurate extrapolation. An equivalent dynamic wheel load model was demonstrated to be feasible for short-to-medium span bridges. Numerical studies of two types of simply-supported bridges were conducted based on site-specific… More >

  • Open Access

    ARTICLE

    A Multi-objective Invasive Weed Optimization Method for Segmentation of Distress Images

    Eslam Mohammed Abdelkader1,2,*, Osama Moselhi3, Mohamed Marzouk4, Tarek Zayed5

    Intelligent Automation & Soft Computing, Vol.26, No.4, pp. 643-661, 2020, DOI:10.32604/iasc.2020.010100

    Abstract Image segmentation is one of the fundamental stages in computer vision applications. Several meta-heuristics have been applied to solve the segmentation problems by extending the Otsu and entropy functions. However, no single-objective function can optimally handle the diversity of information in images besides the multimodality issues of gray-level images. This paper presents a self-adaptive multi-objective optimization-based method for the detection of crack images in reinforced concrete bridges. The proposed method combines the flexibility of information theory functions in addition to the invasive weed optimization algorithm for bi-level thresholding. The capabilities of the proposed method are demonstrated through comparisons with singleobjective… More >

Displaying 1-10 on page 1 of 23. Per Page