Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (126)
  • Open Access

    ARTICLE

    COUPLED LAMINAR NATURAL CONVECTION AND SURFACE RADIATION IN PARTIALLY RIGHT SIDE OPEN CAVITIES

    Ravi Shankar Prasada , S.N. Singhb , Amit Kumar Guptac,*

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-15, 2018, DOI:10.5098/hmt.11.28

    Abstract This paper presents the results of numerical analysis of steady laminar natural convection and surface radiation in the two dimensional partially right side open square cavity filled with natural air (Pr = 0.70) as the fluid medium. The cavity has left isothermal hot wall with top, bottom and right adiabatic walls. In the present study, the governing equations i.e. Navier-Stokes Equation in the stream function – vorticity form and Energy Equation are solved for a constant thermophysical property fluid under the Boussinesq approximation. For discretization of these equations, the finite volume technique is used. For the radiation calculations, the radiosity-irradiation… More >

  • Open Access

    ARTICLE

    HEAT TRANSFER INTENSIFICATION IN A 3D CAVITY USING HYBRID CNT-AL2O3 (15-85%) NANOFLUID

    Mohammed A. Tashkandia , Abdelkarim Aydib,*

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-6, 2018, DOI:10.5098/hmt.11.27

    Abstract In this work, a computational study of convective heat transfer in a hybrid CNT-Al2O3/water nanofluid cavity filled. The main considered parameters are the Rayleigh number and nanoparticles volume fraction. Results are presented in terms of flow structure, temperature field, and average Nusselt number. Since CNT and Al2O3 have different shapes to models are used to evaluate the effective thermal conductivity. It was found that both increasing Rayleigh number and nanoparticles volume fraction increase the heat transfer intensify the flow and affect the temperature field. Adding nanoparticles enhances the heat transfer due to the enhancement of the effective thermal conductivity. The… More >

  • Open Access

    ARTICLE

    A SYSTEMATIC APPROACH FOR OPTIMAL POSITIONING OF HEATED SIDE WALLS IN A SIDE VENTED OPEN CAVITY UNDER NATURAL CONVECTION AND SURFACE RADIATION

    Ravi Shankar Prasada , S.N. Singhb , Amit Kumar Guptac,*

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-12, 2018, DOI:10.5098/hmt.11.15

    Abstract A systematic approach for the optimal positioning of multiple isothermal heat sources mounted on the walls of a side vented open cavity filled with natural air (Pr = 0.70) under natural convection and surface radiation is discussed. A numerical investigation is performed for the different possible cases with the two isothermal heat sources of equal dimensions mounted on the walls of the cavity. The geometrical parameters like the aspect ratio (A = 2), side vent ratio (W1 = 0.50) and side port ratio (W2 = 0.50) along with the most pertinent parameters like Rayleigh Number (104 ≤ Ra ≤ 107More >

  • Open Access

    ARTICLE

    COMPUTATIONAL INVESTIGATION OF CONJUGATE HEAT TRANSFER IN CAVITY FILLED WITH SATURATED POROUS MEDIA

    Ammar Abdulkadhima,*, Azher Mouhsen Abeda , Khaled Al-Farhanyb

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-7, 2018, DOI:10.5098/hmt.11.12

    Abstract The conjugate natural convection heat transfer in a partially heated porous enclosure had been studied numerically. The governing dimensionless equations are solved using finite element method. Classical Darcy model have been used and the considering dimensionless parameters are modified Rayleigh number (10 ≤ Ra ≤ 103), finite wall thickness (0.02 ≤ D ≤ 0.5), thermal conductivity ratio (0.1 ≤ Kr ≤ 10), and the aspect ratio (0.5 ≤ A≤ 10). The results are presented in terms of streamlines, isotherms and local and average Nusselt number. The results indicate that heat transfer can be enhanced by increasing the modified Rayleigh number,… More >

  • Open Access

    ARTICLE

    HEAT TRANSFER AND CU-WATER NANOFLUID FLOW IN A VENTILATED CAVITY HAVING CENTRAL COOLING CYLINDER AND HEATED FROM THE BELOW CONSIDERING THREE DIFFERENT OUTLET PORT LOCATIONS

    Zoubair Boulahia* , Abderrahim Wakif, Rachid Sehaqui

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-10, 2018, DOI:10.5098/hmt.11.11

    Abstract A numerical study has been performed to investigate mixed convection flow in a vented square cavity with circular cooling obstacle. The governing equations such as two dimensional Navier-Stokes, continuity, and energy balance equations have been solved using a finite volume discretization method with SIMPLE algorithm. The effect of the Richardson number, outlet port location and volume fraction of nanoparticles were studied. The outlet port is varied from top to bottom in order to find the maximum heat transfer rate. The results indicated that by increasing the volume fraction of nanoparticles and reducing Richardson number, the heat transfer rate is enhanced.… More >

  • Open Access

    ARTICLE

    Numerical Investigation of the Multiphase Flow Originating from the Muzzle of Submerged Parallel Guns

    Dongxiao Zhang1, Lin Lu1,*, Xiaobin Qi2,3, Xuepu Yan1, Cisong Gao1, Yanxiao Hu1

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.10, pp. 2707-2728, 2023, DOI:10.32604/fdmp.2023.028641

    Abstract A two-dimensional model, employing a dynamic mesh technology, is used to simulate numerically the transient multiphase flow field produced by two submerged parallel guns. After a grid refinement study ensuring grid independence, five different conditions are considered to assess the evolution of cavitation occurring in proximity to the gun muzzle. The simulation results show that flow interference is enabled when the distance between the parallel barrels is relatively small; accordingly, the generation and evolution of the vapor cavity becomes more complex. By means of the Q criterion for vorticity detection, it is shown that cavitation causes the generation of vorticity… More >

  • Open Access

    ARTICLE

    STUDY ON HEAT AND MASS TRANSFER AND NONLINEAR CHARACTERISTICS WITH THERMAL AND SOLUTAL SOURCE IN A CAVITY

    Yubing Lia , Mo Yanga,*, Jian Lib , Zhiyun Wanga

    Frontiers in Heat and Mass Transfer, Vol.13, pp. 1-8, 2019, DOI:10.5098/hmt.13.11

    Abstract Thermalsolutal convection induced by mass and heat source in horizontal cavity is investigated numerically based on SIMPLE algorithm with QUICK scheme. The high-concentration heat source is placed in the square cavity, and the cavity wall is low temperature and low concentration. The smoke is used as the diffusion medium, and the flow field, temperature and concentration of the fluid under different Rayleigh number, buoyancy ratio Nc, Soret numbers and Dufour numbers are analyzed systematically. Parameter study demonstrates that heat and mass transfer of thermosolutal convection are enhanced with increasing Rayleigh number or buoyancy ratio, and the couple-diffusive interaction has a… More >

  • Open Access

    ARTICLE

    DOUBLE DIFFUSIVE NATURAL CONVECTION IN OPEN CAVITY UNDER THE SORET AND DUFOUR EFFECTS

    Zhiyun Wang , Zixuan Zhou, Mo Yang

    Frontiers in Heat and Mass Transfer, Vol.14, pp. 1-7, 2020, DOI:10.5098/hmt.14.13

    Abstract Double diffusive natural convection in an open cavity under the Soret and Dufour effect is simulated numerically. The influences of different Rayleigh numbers (range from 103 to 107), Lewis numbers (range from 0.5 to 8), buoyancy ratios (range from -5 to 5) and Soret and Dufour (range from 0 to 0.5) on the flow field, temperature and concentration distributions, as well as on the variation of the average Nusselt number and the average Sherwood number are investigated. The result shows that, when buoyancy ratios is -1, the average Nusselt number and the average Sherwood number reaches the minimum, namely the… More >

  • Open Access

    ARTICLE

    GENERALIZED MAGNETO- THERMOELASTICITY AND HEAT CONDUCTION ON AN INFINITE MEDIUM WITH SPHERICAL CAVITY

    Mahmoud A. Ismaila, Shadia Fathi Mohamed El Sherif a , A. A. El-Baryb,*, Hamdy M. Youssefc

    Frontiers in Heat and Mass Transfer, Vol.14, pp. 1-7, 2020, DOI:10.5098/hmt.14.3

    Abstract In this paper we will discuss the problem of distribution of thermal stresses and temperature in a generalized magneto–thermo-viscoelastic solid spherical cavity of radius R according to Green- Naghdi (G-N II) and (G-N III) theory. The surface of the cavity is assumed to be free traction and subjected to a constant thermal shock. The Laplace transform technique is used to solve the problem. The state space approach is adopted for the solution of one dimensional problem. Solution of the problem in the physical domain are obtained by using a numerical method of MATLAP Programmer and the expression for the temperature,… More >

  • Open Access

    ARTICLE

    NATURAL CONVECTION IN A SQUARE ENCLOSURE WITH DIFFERENT OPENINGS AND INVOLVES TWO CYLINDERS: A NUMERICAL APPROACH

    Mahmud H. Alia,* , Rawand E. Jalala

    Frontiers in Heat and Mass Transfer, Vol.15, pp. 1-14, 2020, DOI:10.5098/hmt.15.27

    Abstract In this work, natural convection in an adiabatic enclosure with openings induced by two isothermal hot cylinders is approached numerically. The study covers five different configurations of the enclosure as the number and locations of the inlet and outlet ports are varied for Rayleigh number (Ra) between 104 and 106 . Additionally, the study also analyzes the effects of varying the horizontal distance (S) between the cylinders along with their vertical locations () for dimensionless values of 0.4 to 0.3 and -0.2 to 0.2, respectively, at a constant Ra of 106 . The outcomes show that the locations of the… More >

Displaying 21-30 on page 3 of 126. Per Page