Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (52)
  • Open Access

    ARTICLE

    First-Principles Study on the Mechanical and Thermodynamic Properties of (NbZrHfTi)C High-Entropy Ceramics

    Yonggang Tong1,*, Kai Yang1, Pengfei Li1, Yongle Hu1, Xiubing Liang2,*, Jian Liu3, Yejun Li4, Jingzhong Fang1

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-15, 2026, DOI:10.32604/cmc.2025.071890 - 10 November 2025

    Abstract (NbZrHfTi)C high-entropy ceramics, as an emerging class of ultra-high-temperature materials, have garnered significant interest due to their unique multi-principal-element crystal structure and exceptional high-temperature properties. This study systematically investigates the mechanical properties of (NbZrHfTi)C high-entropy ceramics by employing first-principles density functional theory, combined with the Debye-Grüneisen model, to explore the variations in their thermophysical properties with temperature (0–2000 K) and pressure (0–30 GPa). Thermodynamically, the calculated mixing enthalpy and Gibbs free energy confirm the feasibility of forming a stable single-phase solid solution in (NbZrHfTi)C. The calculated results of the elastic stiffness constant indicate that the… More >

  • Open Access

    PROCEEDINGS

    High-Temperature Fracture Behavior and Toughening Mechanisms of PIP-C/SiC Composites: An Integrated Experimental and Phase-Field Study

    Kunjie Wang, Chenghai Xu*, Xinliang Zhao, Songhe Meng

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.34, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.011534

    Abstract Considering the high-temperature application environment and quasi-brittle characteristics, the high-temperature fracture toughness of C/SiC composites is of great significance for the safety application of components in service.
    In this work, the fracture toughness of PIP-C/SiC composites at 25–1600 ℃ in inert atmosphere was tested. The test results show that the fracture toughness and modes of C/SiC composites have significant temperature dependence and difference in in-plane and out-of-plane orientations. With the rising of temperature, the carrying capacity and KIC of C/SiC composites increase first and then decrease, and an inflection point occurs near the fabrication temperature.… More >

  • Open Access

    ARTICLE

    Influence of heat treatment on microwave dielectric properties of erbium doped borotellurite glass ceramics

    S. Othmana, Y. H. Luab, E. S. Sazalia,, Y. S. Yapb,, R. Hisamc

    Chalcogenide Letters, Vol.22, No.5, pp. 451-459, 2025, DOI:10.15251/CL.2025.225.451

    Abstract High-performance glass-ceramics are increasingly explored for their suitability in high-frequency dielectric applications, presenting a significant challenge in materials science. A primary focus has been allocated to investigating borotellurite glasses operating at frequencies below 15 MHz. Borotellurite glasses with the composition 69TeO-10BO3-10PbO-10ZnO-1ErO3 were fabricated via the melt-quenching method. This study examines the effects of heat treatment durations (1–24 hours) on these glasses. Variations in density, molar volume, structure, and dielectric properties were attributed to changes in non-bridging oxygen bonding resulting from the heat treatments. X-ray diffraction analysis confirmed the amorphous nature of the as-quenched glass. Morphological changes More >

  • Open Access

    PROCEEDINGS

    Research on the Fabrication and Properties of Si3N4 Ceramic Radomes via Vat Photopolymerization (VPP)

    Jiamin Wu1,2,3,*, Zhicong Luo1,2, Fulin Zhou1,2, Qiwen Wang1,2, Weikang Li1,2, Weihao Cai1,2, Sen Su1,2, Lin Guo1,2, Chunsheng Ye1,2, Yusheng Shi1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.4, pp. 1-1, 2025, DOI:10.32604/icces.2025.011860

    Abstract Silicon nitride (Si3N4) ceramics with outstanding comprehensive properties, have become important candidate materials for components like radomes and antenna windows. In this study, the vat photopolymerization (VPP) technique was used to fabricate Si3N4 ceramic radomes. Our research centered on optimizing the curing properties of ceramic slurries and precisely regulating the comprehensive properties of the ceramics. Several methods were proposed to modify the curing depth of Si3N4 ceramic slurry, including thermosetting resin coating, sintering aid coating, oxidation coating, double coating, etc. Moreover, a pore-forming agent modification method was also proposed, which enabled the VPP printing of Si3N4 ceramic More >

  • Open Access

    ARTICLE

    Cuckoo Search-Deep Neural Network Hybrid Model for Uncertainty Quantification and Optimization of Dielectric Energy Storage in Na1/2Bi1/2TiO3-Based Ceramic Capacitors

    Shige Wang1, Yalong Liang2, Lian Huang3, Pei Li4,*

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 2729-2748, 2025, DOI:10.32604/cmc.2025.068351 - 23 September 2025

    Abstract This study introduces a hybrid Cuckoo Search-Deep Neural Network (CS-DNN) model for uncertainty quantification and composition optimization of Na1/2Bi1/2TiO3 (NBT)-based dielectric energy storage ceramics. Addressing the limitations of traditional ferroelectric materials—such as hysteresis loss and low breakdown strength under high electric fields—we fabricate (1 − x)NBBT8-xBMT solid solutions via chemical modification and systematically investigate their temperature stability and composition-dependent energy storage performance through XRD, SEM, and electrical characterization. The key innovation lies in integrating the CS metaheuristic algorithm with a DNN, overcoming local minima in training and establishing a robust composition-property prediction framework. Our model accurately… More >

  • Open Access

    REVIEW

    Phase Field Simulation of Fracture Behavior in Shape Memory Alloys and Shape Memory Ceramics: A Review

    Junhui Hua1, Junyuan Xiong2, Bo Xu1,*, Chong Wang1, Qingyuan Wang1

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 65-88, 2025, DOI:10.32604/cmc.2025.068226 - 29 August 2025

    Abstract Shape memory alloys (SMAs) and shape memory ceramics (SMCs) exhibit high recovery ability due to the martensitic transformation, which complicates the fracture mechanism of SMAs and SMCs. The phase field method, as a powerful numerical simulation tool, can efficiently resolve the microstructural evolution, multi-field coupling effects, and fracture behavior of SMAs and SMCs. This review begins by presenting the fundamental theoretical framework of the fracture phase field method as applied to SMAs and SMCs, covering key aspects such as the phase field modeling of martensitic transformation and brittle fracture. Subsequently, it systematically examines the phase More >

  • Open Access

    ARTICLE

    Tailored Phosphate Glass Powders for Augmented Flame Retardancy and Ceramicization in Silicone Rubber

    Yanbei Hou1,2, Xu Chang1, Shuming Liu1, Huimin Zhang3, Jianwei Fu3, Jianbin Wu3, Zhiyong Li3, Guoqiang Tang3, Weizhao Hu1,*

    Journal of Polymer Materials, Vol.42, No.2, pp. 531-548, 2025, DOI:10.32604/jpm.2025.065040 - 14 July 2025

    Abstract Silicone rubber (SR) exhibits superior breathability and high-temperature resistance. However, SR is prone to degradation under extreme heat or combustion, limiting its effectiveness in mitigating secondary hazards. In this study, phosphate glass powder was used to calcinate zinc borate, lanthanum oxide, and cerium oxide. Methylphenyl polysiloxane was then grafted onto the surface of the glass powder, resulting in the modified powders designated as Methylphenyl polysiloxane-grafted zinc borate-modified phosphate glass powder (GF-ZnBM), Methylphenyl polysiloxane-grafted lanthanum oxide-modified phosphate glass powder (GF-LaM), and Methylphenyl polysiloxane-grafted cerium oxide-modified phosphate glass powder (GF-CeM). The modified powders were subsequently incorporated into… More > Graphic Abstract

    Tailored Phosphate Glass Powders for Augmented Flame Retardancy and Ceramicization in Silicone Rubber

  • Open Access

    ARTICLE

    Full Ceramic Bearing Fault Diagnosis with Few-Shot Learning Using GPT-2

    David He1,*, Miao He2, Jay Yoon3

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 1955-1969, 2025, DOI:10.32604/cmes.2025.063975 - 30 May 2025

    Abstract Full ceramic bearings are mission-critical components in oil-free environments, such as food processing, semiconductor manufacturing, and medical applications. Developing effective fault diagnosis methods for these bearings is essential to ensuring operational reliability and preventing costly failures. Traditional supervised deep learning approaches have demonstrated promise in fault detection, but their dependence on large labeled datasets poses significant challenges in industrial settings where fault-labeled data is scarce. This paper introduces a few-shot learning approach for full ceramic bearing fault diagnosis by leveraging the pre-trained GPT-2 model. Large language models (LLMs) like GPT-2, pre-trained on diverse textual data,… More >

  • Open Access

    ARTICLE

    Upconversion photoluminescence and optical temperature sensing properties of PbNb2O6:Yb3+, Ln3+ (Ln3+=Er3+/Ho3+) ceramics

    Z. Liua,*, K. Lib, Y. Sunc, R. X. Wanga

    Chalcogenide Letters, Vol.21, No.12, pp. 977-988, 2024, DOI:10.15251/CL.2024.2112.977

    Abstract Through conventional solid-state sintering process, PbNb2O6:Yb3+, Ln3+ (Ln3+=Er3+/Ho3+) ceramics have been fabricated. The structural information of synthesized ceramics was obtained via X-ray diffraction. Scanning electron microscopy was utilized to investigate their morphological properties. The investigation of upconversion photoluminescence properties of the synthesized ceramics was conducted by analyzing upconversion emission spectra upon excitation with 980 nm light. Power dependence studies confirmed the presence of two-photon absorption processes in both PbNb2O6:Yb3+, Er 3+ and PbNb2O6:Yb3++, Ho3+ ceramics. Temperature-dependent experiments from 303 K to 513 K demonstrated significant variations in emission intensities and fluorescence intensity ratios (FIR), enabling the assessment of temperature More >

  • Open Access

    PROCEEDINGS

    Microfluidic Fabrication of Various Ceramic Microparticles

    Chenchen Zhou1,2, Shuaishuai Liang3, Bin Qi3, Chenxu Liu2, Nam-Joon Cho1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.012380

    Abstract Micro tools/parts are attracting increasing attention due to the miniaturization evolutionary tendency in many fields, whose functionalities are critically determined by their materials and shapes [1- 5]. Sharp-edged ceramic microparticles have great prospects to be used as micromachining tools and micro components. However, it remains a huge challenge to fabricate nontransparent ceramic sharp-edged microparticles in a high-throughput way while taking their shape complexity, precision, and strength into account [6-8]. Herein, we present an online mixing and in-situ polymerization strategy: “one-pot microfluidic fabrication” along with two novel microfluidic device fabrication methods: “groove & tongue” and sliding More >

Displaying 1-10 on page 1 of 52. Per Page