Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (49)
  • Open Access

    ARTICLE

    Sine-Polynomial Chaotic Map (SPCM): A Decent Cryptographic Solution for Image Encryption in Wireless Sensor Networks

    David S. Bhatti1,*, Annas W. Malik2, Haeung Choi1, Ki-Il Kim3,*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 2157-2177, 2025, DOI:10.32604/cmc.2025.068360 - 29 August 2025

    Abstract Traditional chaotic maps struggle with narrow chaotic ranges and inefficiencies, limiting their use for lightweight, secure image encryption in resource-constrained Wireless Sensor Networks (WSNs). We propose the SPCM, a novel one-dimensional discontinuous chaotic system integrating polynomial and sine functions, leveraging a piecewise function to achieve a broad chaotic range () and a high Lyapunov exponent (5.04). Validated through nine benchmarks, including standard randomness tests, Diehard tests, and Shannon entropy (3.883), SPCM demonstrates superior randomness and high sensitivity to initial conditions. Applied to image encryption, SPCM achieves 0.152582 s (39% faster than some techniques) and 433.42 More >

  • Open Access

    ARTICLE

    Slice-Based 6G Network with Enhanced Manta Ray Deep Reinforcement Learning-Driven Proactive and Robust Resource Management

    Venkata Satya Suresh kumar Kondeti1, Raghavendra Kulkarni1, Binu Sudhakaran Pillai2, Surendran Rajendran3,*

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 4973-4995, 2025, DOI:10.32604/cmc.2025.066428 - 30 July 2025

    Abstract Next-generation 6G networks seek to provide ultra-reliable and low-latency communications, necessitating network designs that are intelligent and adaptable. Network slicing has developed as an effective option for resource separation and service-level differentiation inside virtualized infrastructures. Nonetheless, sustaining elevated Quality of Service (QoS) in dynamic, resource-limited systems poses significant hurdles. This study introduces an innovative packet-based proactive end-to-end (ETE) resource management system that facilitates network slicing with improved resilience and proactivity. To get around the drawbacks of conventional reactive systems, we develop a cost-efficient slice provisioning architecture that takes into account limits on radio, processing, and… More >

  • Open Access

    ARTICLE

    Secure Medical Image Transmission Using Chaotic Encryption and Blockchain-Based Integrity Verification

    Rim Amdouni1,2,*, Mahdi Madani3, Mohamed Ali Hajjaji1,4, El Bay Bourennane3, Mohamed Atri5

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5527-5553, 2025, DOI:10.32604/cmc.2025.065356 - 30 July 2025

    Abstract Ensuring the integrity and confidentiality of patient medical information is a critical priority in the healthcare sector. In the context of security, this paper proposes a novel encryption algorithm that integrates Blockchain technology, aiming to improve the security and privacy of transmitted data. The proposed encryption algorithm is a block-cipher image encryption scheme based on different chaotic maps: The logistic Map, the Tent Map, and the Henon Map used to generate three encryption keys. The proposed block-cipher system employs the Hilbert curve to perform permutation while a generated chaos-based S-Box is used to perform substitution.… More >

  • Open Access

    ARTICLE

    Active Protection Scheme of DNN Intellectual Property Rights Based on Feature Layer Selection and Hyperchaotic Mapping

    Xintao Duan1,2,*, Yinhang Wu1, Zhao Wang1, Chuan Qin3

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 4887-4906, 2025, DOI:10.32604/cmc.2025.064620 - 30 July 2025

    Abstract Deep neural network (DNN) models have achieved remarkable performance across diverse tasks, leading to widespread commercial adoption. However, training high-accuracy models demands extensive data, substantial computational resources, and significant time investment, making them valuable assets vulnerable to unauthorized exploitation. To address this issue, this paper proposes an intellectual property (IP) protection framework for DNN models based on feature layer selection and hyper-chaotic mapping. Firstly, a sensitivity-based importance evaluation algorithm is used to identify the key feature layers for encryption, effectively protecting the core components of the model. Next, the L1 regularization criterion is applied to More >

  • Open Access

    ARTICLE

    Improved Multi-Fusion Black-Winged Kite Algorithm for Optimizing Stochastic Configuration Networks for Lithium Battery Remaining Life Prediction

    Yuheng Yin, Lin Wang*

    Energy Engineering, Vol.122, No.7, pp. 2845-2864, 2025, DOI:10.32604/ee.2025.065889 - 27 June 2025

    Abstract The accurate estimation of lithium battery state of health (SOH) plays an important role in the health management of battery systems. In order to improve the prediction accuracy of SOH, this paper proposes a stochastic configuration network based on a multi-converged black-winged kite search algorithm, called SBKA-CLSCN. Firstly, the indirect health index (HI) of the battery is extracted by combining it with Person correlation coefficients in the battery charging and discharging cycle point data. Secondly, to address the problem that the black-winged kite optimization algorithm (BKA) falls into the local optimum problem and improve the… More >

  • Open Access

    ARTICLE

    Enhancing Post-Quantum Information Security: A Novel Two-Dimensional Chaotic System for Quantum Image Encryption

    Fatima Asiri*, Wajdan Al Malwi

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 2053-2077, 2025, DOI:10.32604/cmes.2025.064348 - 30 May 2025

    Abstract Ensuring information security in the quantum era is a growing challenge due to advancements in cryptographic attacks and the emergence of quantum computing. To address these concerns, this paper presents the mathematical and computer modeling of a novel two-dimensional (2D) chaotic system for secure key generation in quantum image encryption (QIE). The proposed map employs trigonometric perturbations in conjunction with rational-saturation functions and hence, named as Trigonometric-Rational-Saturation (TRS) map. Through rigorous mathematical analysis and computational simulations, the map is extensively evaluated for bifurcation behaviour, chaotic trajectories, and Lyapunov exponents. The security evaluation validates the map’s… More >

  • Open Access

    ARTICLE

    UAV 3D Path Planning Based on Improved Chimp Optimization Algorithm

    Wenli Lei1,2,*, Xinghao Wu1,2, Kun Jia1,2, Jinping Han1,2

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5679-5698, 2025, DOI:10.32604/cmc.2025.061268 - 19 May 2025

    Abstract Aiming to address the limitations of the standard Chimp Optimization Algorithm (ChOA), such as inadequate search ability and susceptibility to local optima in Unmanned Aerial Vehicle (UAV) path planning, this paper proposes a three-dimensional path planning method for UAVs based on the Improved Chimp Optimization Algorithm (IChOA). First, this paper models the terrain and obstacle environments spatially and formulates the total UAV flight cost function according to the constraints, transforming the path planning problem into an optimization problem with multiple constraints. Second, this paper enhances the diversity of the chimpanzee population by applying the Sine… More >

  • Open Access

    ARTICLE

    Single Qubit Quantum Logistic-Sine XYZ-Rotation Maps: An Ultra-Wide Range Dynamics for Image Encryption

    De Rosal Ignatius Moses Setiadi1,*, T. Sutojo1, Supriadi Rustad1, Muhamad Akrom1, Sudipta Kr Ghosal2, Minh T. Nguyen3, Arnold Adimabua Ojugo4

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2161-2188, 2025, DOI:10.32604/cmc.2025.063729 - 16 April 2025

    Abstract Data security has become a growing priority due to the increasing frequency of cyber-attacks, necessitating the development of more advanced encryption algorithms. This paper introduces Single Qubit Quantum Logistic-Sine XYZ-Rotation Maps (SQQLSR), a quantum-based chaos map designed to generate one-dimensional chaotic sequences with an ultra-wide parameter range. The proposed model leverages quantum superposition using Hadamard gates and quantum rotations along the X, Y, and Z axes to enhance randomness. Extensive numerical experiments validate the effectiveness of SQQLSR. The proposed method achieves a maximum Lyapunov exponent (LE) of ≈55.265, surpassing traditional chaotic maps in unpredictability. The bifurcation analysis… More >

  • Open Access

    ARTICLE

    Chaos-Based Novel Watermarked Satellite Image Encryption Scheme

    Mohamed Medani1, Yahia Said2, Nashwan Adnan Othman3,4, Farrukh Yuldashev5, Mohamed Kchaou6, Faisal Khaled Aldawood6, Bacha Rehman7,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 1049-1070, 2025, DOI:10.32604/cmes.2025.063405 - 11 April 2025

    Abstract Satellite images are widely used for remote sensing and defence applications, however, they are subject to a variety of threats. To ensure the security and privacy of these images, they must be watermarked and encrypted before communication. Therefore, this paper proposes a novel watermarked satellite image encryption scheme based on chaos, Deoxyribonucleic Acid (DNA) sequence, and hash algorithm. The watermark image, DNA sequence, and plaintext image are passed through the Secure Hash Algorithm (SHA-512) to compute the initial condition (keys) for the Tangent-Delay Ellipse Reflecting Cavity Map (TD-ERCS), Henon, and Duffing chaotic maps, respectively. Through More >

  • Open Access

    ARTICLE

    IDCE: Integrated Data Compression and Encryption for Enhanced Security and Efficiency

    Muhammad Usama1, Arshad Aziz2, Suliman A. Alsuhibany3,*, Imtiaz Hassan2, Farrukh Yuldashev4

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 1029-1048, 2025, DOI:10.32604/cmes.2025.061787 - 11 April 2025

    Abstract Data compression plays a vital role in data management and information theory by reducing redundancy. However, it lacks built-in security features such as secret keys or password-based access control, leaving sensitive data vulnerable to unauthorized access and misuse. With the exponential growth of digital data, robust security measures are essential. Data encryption, a widely used approach, ensures data confidentiality by making it unreadable and unalterable through secret key control. Despite their individual benefits, both require significant computational resources. Additionally, performing them separately for the same data increases complexity and processing time. Recognizing the need for More >

Displaying 1-10 on page 1 of 49. Per Page