Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    ARTICLE

    Targeting LncRNA LLNLR-299G3.1 with antisense oligonucleotide inhibits malignancy of esophageal squamous cell carcinoma cells in vitro and in vivo

    LI TIAN1,#, YONGYI HUANG1,#, BAOZHEN ZHANG2,#, YI SONG1,#, LIN YANG3, QIANQIAN CHEN1, ZHENG WANG3, YILING WANG1, QIHAN HE1, WENHAN YANG1, SHUYONG YU4, TIANYU LU5, ZICHEN LIU1, KAIPING GAO1,*, XIUJUN FAN2,*, JIAN SONG4,*, RIHONG ZHAI1,*

    Oncology Research, Vol.31, No.4, pp. 463-479, 2023, DOI:10.32604/or.2023.028791

    Abstract Accumulating evidence has indicated that long non-coding RNAs (lncRNAs) play critical roles in the development and progression of cancers, including esophageal squamous cell carcinoma (ESCC). However, the mechanisms of lncRNAs in ESCC are still incompletely understood and therapeutic attempts for in vivo targeting cancer-associated lncRNA remain a challenge. By RNA-sequencing analysis, we identified that LLNLR-299G3.1 was a novel ESCC-associated lncRNA. LLNLR-299G3.1 was up-regulated in ESCC tissues and cells and promoted ESCC cell proliferation and invasion. Silencing of LLNLR-299G3.1 with ASO (antisense oligonucleotide) resulted in opposite effects. Mechanistically, LLNLR-299G3.1 bound to cancer-associated RNA binding proteins and regulated the expression of cancer-related… More >

  • Open Access

    ARTICLE

    Doubled haploid production in advanced back cross generations and molecular cytogenetic characterization of rye chromatin in triticale × wheat derived doubled haploid lines

    MUNIYANDI SAMUEL JEBERSON1,*, HARINDER KUMAR CHAUDHARY2, RAKESH KUMAR CHAHOTA3, SHABIR HUSSAIN WANI4,*

    BIOCELL, Vol.45, No.6, pp. 1651-1659, 2021, DOI:10.32604/biocell.2021.015735

    Abstract The rye genome has shown potential for improvement of bread wheat, where wheat-rye substitutions and translocations have been and are frequently used in resistance breeding. Crosses belongs to different generations viz., BC1F1, BC1F2, BC1F3, BC1F4 and BC2F3 of triticale × wheat derived were used for different haploid induction parameters using Gogon grass (Imperata cylindrica) as a pollen source. The percentage of pseudo seed formation ranged from 34.55% for BC1F2 to 63.77 for BC1F1 crosses, the haploid embryo formation ranges from 9.43% for BC1F1 to 30.2% for BC1F2, the haploid plant generation ranges from 19.36% for BC1F2 to 63.25% for BC1F1.… More >

  • Open Access

    REVIEW

    Epigenetic regulation−The guardian of cellular homeostasis and lineage commitment

    KAVITHA GOVARTHANAN1,*, PIYUSH KUMAR GUPTA2, BINITA ZIPPORAHE1, REKHA GAHTORI3, SOUMYA PANDIT2, RAM PRASAD4,*

    BIOCELL, Vol.45, No.3, pp. 501-515, 2021, DOI:10.32604/biocell.2021.014441

    Abstract Stem cells constitute the source of cells that replenishes the worn out or damaged cells in our tissue and enable the tissue to carry out the destined function. Tissue-specific stem cells are compartmentalized in a niche, which keeps the stem cells under quiescent condition. Thus, understanding the molecular events driving the successful differentiation of stem cells into several lineages is essential for its better manipulation of human applications. Given the developmental aspects of the cell, the cellular function is greatly dependent on the epigenomics signature that in turn governs the expression profile of the cell. The stable inheritance of the… More >

  • Open Access

    ARTICLE

    Cytogenetical Changes among Polyembryonic (PEm) and Non-PEm Maize Plants

    A. A. Román-Calzoncit1, F. Ramírez-Godina2,*, J. Sánchez-Laureano2, A. C. Flores-Gallegos1, J. Espinoza-Velázquez2, R. Rodríguez-Herrera1,*

    Phyton-International Journal of Experimental Botany, Vol.90, No.1, pp. 87-97, 2021, DOI:10.32604/phyton.2020.013880

    Abstract Polyembryony in maize (PEm) contributes to improving the nutritional properties of the grain, as well as an increase in yield, since it generates multiple plants per seed, opening the possibility of developing new varieties. However, it is unknown whether polyembryony in maize is the product of chromosomal abnormalities. Based on the above, in this research a cytogenetic study was proposed to verify if chromosomal abnormalities are related to the maize polyembryony. For a meiotic study, maize genotypes with variable proportions of polyembryony (PEm), from the UA-IMM-BAP population and non-PEm (monoembryonic) maize were used, while for a mitosis analysis, 30 families… More >

  • Open Access

    ARTICLE

    Apoptogenic effect of the lipophilic o-naphthoquinone CG 10-248 on rat hepatocytes: light and electron microscopy studies

    Lidia M. Lopez*, Marta Dubin**, Patricia H. Carrizo**, Mario H. Burgos***, Amanda Pellegrino De Iraldi*, Andrés O. M. Stoppani**

    BIOCELL, Vol.27, No.2, pp. 213-224, 2003, DOI:10.32604/biocell.2003.27.213

    Abstract CG 10-248 (3,4-dihydro-2,2-dimethyl-9-chloro-2H-naphtho[1,2b]pyran- 5,6-dione; CG-NQ), a β-lapachone analogue, modified the ultrastructure of rat hepatocytes, as demonstrated by light and electron microscopy. After 4 h incubation with 100 µM CG-NQ, the following effects were observed: (a) nuclear chromatin condensation; (b) chromatin fragmentation; (c) displacement of mitochondria, concentrated around the nucleus; (d) disruption or expansion of mitochondrial outer or inner membranes, respectively; (e) displacement and alteration of endoplasmic reticulum (rough and smooth); (f) decrease of microvilli; (g) blebbing of plasma membrane and production of apoptotic bodies formed by folding of plasma membrane fragments around mitochondria or peroxysomes; and (h) production of hydrogen… More >

  • Open Access

    ABSTRACT

    Histone Modification and Chromatin Reorganization Regulated by Mechanical Tension in Single Cell Mitosis

    Qin Peng1, Shaoying Lu1, Shu Chien1, Yingxiao Wang1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 83-83, 2019, DOI:10.32604/mcb.2019.07385

    Abstract The dramatic re-organization of chromatin during mitosis is perhaps one of the most fundamental of all cell processes [1,2]. It remains unclear how epigenetic histone modifications, despite their crucial roles in regulating chromatin architectures, are dynamically coordinated with chromatin reorganization in controlling this process. Mechanical cues have also been shown to play important roles in modulating gene expressions and cellular functions [3,4]; however, it is still unclear about the mechanical regulations of epigenetics and chromatin organization. In this study, we have developed and characterized biosensors with high sensitivity and specificity based on fluorescence resonance energy transfer (FRET). These biosensors were… More >

Displaying 1-10 on page 1 of 6. Per Page