Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (28)
  • Open Access

    ARTICLE

    Study of Ultraviolet Radiation Effect on the Mechanical Properties of Jute and Montmorillonite Nanoclay Reinforced Polyester Nanocomposites

    S. ARULMURUGANa,*, N. VENKATESHWARANa, S. KUMARa, P. CHANDRASEKARa

    Journal of Polymer Materials, Vol.40, No.1-2, pp. 83-91, 2023, DOI:10.32381/JPM.2023.40.1-2.7

    Abstract In this research, the effect of UV light on the mechanical properties of jute polymer nanocomposites was evaluated. Due to the fact that photodegradation is a surface process and is confined to the degradation of the mechanical characteristics of polyester resin, this study focuses on the resin quality. Therefore, test samples comprised of fibre-reinforced polyester nanoclay composites were fabricated different weight ratios of nanoclay. They were put through UV exposure in an Ultraviolet (UV) chamber. Tensile testing samples were made in accordance with ASTMD638 and had a minimum thickness of 3 mm. Additionally, specimens for Flexural and Impact testing were… More >

  • Open Access

    ARTICLE

    Effect of NaCl Concentration on the Cumulative Strain and Pore Distribution of Clay under Cyclic Loading

    Xinshan Zhuang*, Shunlei Xia, Ruijie Pan

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.2, pp. 447-461, 2024, DOI:10.32604/fdmp.2023.042220

    Abstract Clay, as the most common soil used for foundation fill, is widely used in various infrastructure projects. The physical and mechanical properties of clay are influenced by the pore solution environment. This study uses a GDS static/dynamic triaxial apparatus and nuclear magnetic resonance experiments to investigate the effects of cyclic loading on clay foundations. Moreover, the development of cumulative strain in clay is analyzed, and a fitting model for cumulative plastic strain is introduced by considering factors such as NaCl solution concentration, consolidation stress ratio, and cycle number. In particular, the effects of the NaCl solution concentration and consolidation stress… More >

  • Open Access

    ARTICLE

    Numerical Analysis of the Thermal Properties of Ecological Materials Based on Plaster and Clay

    A. Lkouen1,*, M. Lamrani2, A. Meskini1, A. Khabbazi3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.8, pp. 2013-2026, 2023, DOI:10.32604/fdmp.2023.026929

    Abstract Most of the energy savings in the building sector come from the choice of the materials used and their microphysical properties. In the present study, through numerical simulations a link is established between the thermal performance of composite materials and their microstructures. First, a two-phase 3D composite structure is modeled, then the RSA (Random Sequential Addition) algorithm and a finite element method (FE) are applied to evaluate the effective thermal conductivity of these composites in the steady-state. In particular, building composites based on gypsum and clay, consolidated with peanut shell additives and/or cork are considered. The numerically determined thermal conductivities… More > Graphic Abstract

    Numerical Analysis of the Thermal Properties of Ecological Materials Based on Plaster and Clay

  • Open Access

    ARTICLE

    Effects of Cationic Surfactant on Fresh and Hardened Properties of Cement-Based Mortar

    Soumaya Zormati, Fadhel Aloulou*, Habib Sammouda

    Journal of Renewable Materials, Vol.11, No.5, pp. 2345-2365, 2023, DOI:10.32604/jrm.2023.026170

    Abstract

    The objective of this study is to analyze the effects of using surfactant (CTAB) and cellulose nanofibers (NFC) as an admixture in cement mortars. We examined composite properties as porosity, compression energy, thermal conductivity and hydration. The results showed that with the addition of 0.7% by weight of NFC per emulsion in the presence of a cationic surfactant (CTAB). The new material produced presented a dry porosity between 4.7% and 4.4%, compressive strength between 9.8 and 22.9 MPa, and thermal conductivity between 0.95 and 2.25 W·m−1·K−1. Thus we show better mechanical and thermal performance than that traditional Portland cement mortar… More > Graphic Abstract

    Effects of Cationic Surfactant on Fresh and Hardened Properties of Cement-Based Mortar

  • Open Access

    ARTICLE

    Hydration Characteristics and Mechanical Properties of Cement-Based Materials Modified by Calcined Zeolite and Montmorillonite

    Lingling Qin1, Mengya Zhou1, Jiahao Yan1, Ping Duan1,2,3,4,*, Yingcan Zhu5,*, Wei Chen6, Zuhua Zhang7, Aiguo Wang2

    Journal of Renewable Materials, Vol.11, No.5, pp. 2191-2208, 2023, DOI:10.32604/jrm.2023.025197

    Abstract Montmorillonite and clinoptilolite zeolite were used as representative materials to prepare calcined clay-cement binary cementitious materials in order to study the effect of calcination treatment on the activation of clay minerals and the activity difference between layered and framed clays in this research. The influence of different calcined clay content (2%, 4%, 6%, 8%, 10%) on the fluidity, compressive strength, microstructure, phase change, and hydration heat of cement-based materials were analyzed. The calcined clay improves the fluidity of cement-based materials as compared with the uncalcined group. The addition of calcined montmorillonite (CMT) improves the development of mechanical strength, and the… More > Graphic Abstract

    Hydration Characteristics and Mechanical Properties of Cement-Based Materials Modified by Calcined Zeolite and Montmorillonite

  • Open Access

    ARTICLE

    Processing and Characterization of Nano-biocomposites Based on Mater-Bi® with Layered Silicates

    A. Terenzi1, A. Iannoni1, L. Torre1, A. Jiménez2,*, J.M. Kenny1

    Journal of Renewable Materials, Vol.2, No.1, pp. 42-51, 2014, DOI:10.7569/JRM.2014.634101

    Abstract The development of new nano-biocomposites has been one of the main research areas of interest in polymer science in recent years, since they can combine the intrinsic biodegradable nature of matrices with the ability to modify their properties by the addition of selected nano-reinforcements. In this work, the addition of mineral nanoclays (montmorillonites and sepiolites) to a commercial starch-based matrix is proposed. A complete study on their processing by melt-intercalation techniques and further evaluation of the main properties of nano-biocomposites has been carried out. The results reported show an important infl uence of the nano-biocomposites morphology on their fi nal… More >

  • Open Access

    ARTICLE

    Modeling of Crack Development Associated with Proppant Hydraulic Fracturing in a Clay-Carbonate Oil Deposit

    Sergey Galkin1,*, Ian Savitckii1, Denis Shustov1, Artyom Kukhtinskii1, Boris Osovetsky2, Alexander Votinov3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.2, pp. 273-284, 2023, DOI:10.32604/fdmp.2022.021697

    Abstract Survey and novel research data are used in the present study to classify/identify the lithological type of Verey age reservoirs’ rocks. It is shown how the use of X-ray tomography can clarify the degree of heterogeneity, porosity and permeability of these rocks. These data are then used to elaborate a model of hydraulic fracturing. The resulting software can take into account the properties of proppant and breakdown fluid, thermal reservoir conditions, oil properties, well design data and even the filtration and elastic-mechanical properties of the rocks. Calculations of hydraulic fracturing crack formation are carried out and the results are compared… More > Graphic Abstract

    Modeling of Crack Development Associated with Proppant Hydraulic Fracturing in a Clay-Carbonate Oil Deposit

  • Open Access

    ARTICLE

    Elaboration of a Road Material Based on Clayey Soil and Crushed Sand

    H. G. R. Sekloka1,2,*, C. P. Yabi2,3, R. Cloots1, M. Gibigaye2

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.6, pp. 1595-1605, 2022, DOI:10.32604/fdmp.2022.022434

    Abstract To contribute to the enhancement of unconventional local materials used for road construction, this study characterizes a crushed sand 0/5, a clayey soil and the litho-stabilized material without and with hydraulic binder and determines their use in accordance with some reference specifications (CEBTP 1984). It is shown that the different components are not usable alone in pavement base. Indeed, the plasticity index obtained for the clayey soil is 21%, a value higher than the imposed standards. In addition, the grading of the 0/5 crushed sand does not fit into the range proposed by CEBTP. A combination of these two (02)… More >

  • Open Access

    ARTICLE

    Reinforcement of Clay Soils through Fracture Grouting

    Shaozhen Cheng1,2,3,*, Tielin Chen1, Zizhou Xue3, Kang Zhu3, Jianke Li3

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.6, pp. 1649-1665, 2022, DOI:10.32604/fdmp.2022.018789

    Abstract Fracture grouting is widely used for building foundation reinforcement, however the underpinning mechanisms are still not clear. Using numerical results about a single-hole fracture grouting process as a basis, a model composed of soil and grouting veins has been created to analyze the reinforcement mechanism. The influence weights of the grouting vein skeleton and compaction effect have been studied, thereby obtaining relevant information on the compressive modulus of the considered composite soil. The research results show that the compaction effect plays a leading role in the soil fracture grouting reinforcement. The grouting pressure, the hardened grouting vein modulus, and the… More >

  • Open Access

    ARTICLE

    Thermomechanical Characterization of a Bio-Sourced Material Based on Clay and Alfa Fibers

    Sara Ibn-Elhaj1,*, Yassine Elhamdouni1, Soumia Mounir1,2, Abdelhamid Khabbazi1

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.6, pp. 1853-1863, 2022, DOI:10.32604/fdmp.2022.022531

    Abstract Bio-based materials are of great interest owing to their abundance and the immense potential they display as an ideal alternative to widely used industrial construction materials (that directly and indirectly harm the environment). In this scope, an in-depth experimental study is presented here on clay-based materials aimed to enhance their properties through the addition of other bio-based components such as fibers, in the present case alfa fiber. The thermal conductivity and mechanical properties (compressive and flexural tensile strengths) of the composite clay-alfa material are analyzed with the percentage of alfa fiber in the matrix ranging from 0% to 4%. It… More >

Displaying 1-10 on page 1 of 28. Per Page