Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (146)
  • Open Access


    LDPC Code’s Decoding Algorithms for Wireless Sensor Network: a Brief Review

    Weidong Fang1, Wuxiong Zhang1,2, Lianhai Shan1,*, Biruk Assefa3, Wei Chen4

    Journal of New Media, Vol.1, No.1, pp. 45-50, 2019, DOI:10.32604/jnm.2019.05786

    Abstract As an effective error correction technology, the Low Density Parity Check Code (LDPC) has been researched and applied by many scholars. Meanwhile, LDPC codes have some prominent performances, which involves close to the Shannon limit, achieving a higher bit rate and a fast decoding. However, whether these excellent characteristics are suitable for the resource-constrained Wireless Sensor Network (WSN), it seems to be seldom concerned. In this article, we review the LDPC code’s structure brief.ly, and them classify and summarize the LDPC codes’ construction and decoding algorithms, finally, analyze the applications of LDPC code for WSN. We believe that our contributions… More >

  • Open Access


    Anti-Noise Quantum Network Coding Protocol Based on Bell States and Butterfly Network Model

    Zhexi Zhang1, Zhiguo Qu1,2,*

    Journal of Quantum Computing, Vol.1, No.2, pp. 89-109, 2019, DOI:10.32604/jqc.2019.07415

    Abstract How to establish a secure and efficient quantum network coding algorithm is one of important research topics of quantum secure communications. Based on the butterfly network model and the characteristics of easy preparation of Bell states, a novel anti-noise quantum network coding protocol is proposed in this paper. The new protocol encodes and transmits classical information by virtue of Bell states. It can guarantee the transparency of the intermediate nodes during information, so that the eavesdropper Eve disables to get any information even if he intercepts the transmitted quantum states. In view of the inevitability of quantum noise in quantum… More >

  • Open Access


    Feature Relationships Learning Incorporated Age Estimation Assisted by Cumulative Attribute Encoding

    Qing Tian1,2,3,*, Meng Cao1,2, Tinghuai Ma1,2

    CMC-Computers, Materials & Continua, Vol.56, No.3, pp. 467-482, 2018, DOI: 10.3970/cmc.2018.02197

    Abstract The research of human facial age estimation (AE) has attracted increasing attention for its wide applications. Up to date, a number of models have been constructed or employed to perform AE. Although the goal of AE can be achieved by either classification or regression, the latter based methods generally yield more promising results because the continuity and gradualness of human aging can naturally be preserved in age regression. However, the neighbor-similarity and ordinality of age labels are not taken into account yet. To overcome this issue, the cumulative attribute (CA) coding was introduced. Although such age label relationships can be… More >

  • Open Access


    GFCache: A Greedy Failure Cache Considering Failure Recency and Failure Frequency for an Erasure-Coded Storage System

    Mingzhu Deng1, Fang Liu2,*, Ming Zhao3, Zhiguang Chen2, Nong Xiao2,1

    CMC-Computers, Materials & Continua, Vol.58, No.1, pp. 153-167, 2019, DOI:10.32604/cmc.2019.03585

    Abstract In the big data era, data unavailability, either temporary or permanent, becomes a normal occurrence on a daily basis. Unlike the permanent data failure, which is fixed through a background job, temporarily unavailable data is recovered on-the-fly to serve the ongoing read request. However, those newly revived data is discarded after serving the request, due to the assumption that data experiencing temporary failures could come back alive later. Such disposal of failure data prevents the sharing of failure information among clients, and leads to many unnecessary data recovery processes, (e.g. caused by either recurring unavailability of a data or multiple… More >

  • Open Access


    Reversible Natural Language Watermarking Using Synonym Substitution and Arithmetic Coding

    Lingyun Xiang1,2, Yan Li2, Wei Hao3,*, Peng Yang4, Xiaobo Shen5

    CMC-Computers, Materials & Continua, Vol.55, No.3, pp. 541-559, 2018, DOI: 10.3970/cmc.2018.03510

    Abstract For protecting the copyright of a text and recovering its original content harmlessly, this paper proposes a novel reversible natural language watermarking method that combines arithmetic coding and synonym substitution operations. By analyzing relative frequencies of synonymous words, synonyms employed for carrying payload are quantized into an unbalanced and redundant binary sequence. The quantized binary sequence is compressed by adaptive binary arithmetic coding losslessly to provide a spare for accommodating additional data. Then, the compressed data appended with the watermark are embedded into the cover text via synonym substitutions in an invertible manner. On the receiver side, the watermark and… More >

  • Open Access


    Bus Encoded LUT Multiplier for Portable Biomedical Therapeutic Devices

    R. Praveena1, S. Nirmala2

    CMC-Computers, Materials & Continua, Vol.53, No.1, pp. 37-47, 2017, DOI:10.3970/cmc.2017.053.039

    Abstract DSP operation in a Biomedical related therapeutic hardware need to be performed with high accuracy and with high speed. Portable DSP hardware’s like pulse/heart beat detectors must perform with reduced operational power due to lack of conventional power sources. This work proposes a hybrid biomedical hardware chip in which the speed and power utilization factors are greatly improved. Multipliers are the core operational unit of any DSP SoC. This work proposes a LUT based unsigned multiplication which is proven to be efficient in terms of high operating speed. For n bit input multiplication n*n memory array of 2n bit size… More >

Displaying 141-150 on page 15 of 146. Per Page