Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (18)
  • Open Access

    ABSTRACT

    Convolution Neural Networks and Support Vector Machines for Automatic Segmentation of Intracoronary Optical Coherence Tomography

    Caining Zhang1, Huaguang Li2, Xiaoya Guo3, David Molony4, Xiaopeng Guo2, Habib Samady4, Don P. Giddens4,5, Lambros Athanasiou6, Rencan Nie2,*, Jinde Cao3,*, Dalin Tang1,*,7

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 31-31, 2019, DOI:10.32604/mcb.2019.06983

    Abstract Cardiovascular diseases are closely associated with deteriorating atherosclerotic plaques. Optical coherence tomography (OCT) is a recently developed intravascular imaging technique with high resolution approximately 10 microns and could provide accurate quantification of coronary plaque morphology. However, tissue segmentation of OCT images in clinic is still mainly performed manually by physicians which is time consuming and subjective. To overcome these limitations, two automatic segmentation methods for intracoronary OCT image based on support vector machine (SVM) and convolutional neural network (CNN) were performed to identify the plaque region and characterize plaque components. In vivo IVUS and OCT coronary plaque data from 5… More >

  • Open Access

    ABSTRACT

    Automatic Segmentation Methods Based on Machine Learning for Intracoronary Optical Coherence Tomography Image

    Caining Zhang1, Xiaoya Guo2, Dalin Tang1,3,*, David Molony4, Chun Yang3, Habib Samady4, Jie Zheng5, Gary S. Mintz6, Akiko Maehara6, Mitsuaki Matsumura6, Don P. Giddens4,7

    Molecular & Cellular Biomechanics, Vol.16, Suppl.1, pp. 79-80, 2019, DOI:10.32604/mcb.2019.05747

    Abstract Cardiovascular diseases are closely associated with sudden rupture of atherosclerotic plaques. Previous image modalities such as magnetic resonance imaging (MRI) and intravascular ultrasound (IVUS) were unable to identify vulnerable plaques due to their limited resolution. Optical coherence tomography (OCT) is an advanced intravascular imaging technique developed in recent years which has high resolution approximately 10 microns and could provide more accurate morphology of coronary plaque. In particular, it is now possible to identify plaques with fibrous cap thickness <65 μm, an accepted threshold value for vulnerable plaques. However, the current segmentation of OCT images are still performed manually by physicians… More >

  • Open Access

    ABSTRACT

    Vascular Deformation Analysis Based on in Vivo Intravascular Optical Coherence Tomography Imaging

    Ju Huang1, Cuiru Sun1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.1, pp. 67-68, 2019, DOI:10.32604/mcb.2019.05738

    Abstract Intravascular optical coherence tomography (OCT) has the characteristics of high resolution and fast imaging speed. Continuous images of the same section of the same vessel can reflect the deformation characteristics of the vessel wall under different blood pressure. Digital image processing may be used to segment various structures on the vascular wall and extract the deformation incorporating with biomechanical analysis. Image filtering plays a very important role in image processing. Median filter was used to filter salt and pepper noise in OCT images. Fuzzy function gray processing method was used to suppress irrelevant information and improve image clarity. Dividing point… More >

  • Open Access

    ABSTRACT

    Vascular Stress Analysis During in Vivo Intravascular Optical Coherence Tomography Imaging

    Junjie Jia1, Cuiru Sun1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.1, pp. 61-64, 2019, DOI:10.32604/mcb.2019.05736

    Abstract Intravascular optical coherence tomography (IVOCT) has been employed to clinical coronary imaging for several years. But the influence of flushing and OCT catheter to the blood vessel biomechanical properties have not been studied. In this paper, IVOCT imaging is integrated with the fluid-structure interaction (FSI) simulation to study the blood flow velocity and the stress distribution of a porcine carotid artery during IVOCT imaging. 3D geometric model is built based on the in vivo OCT images, and a hyperelastic model is employed for the material properties of the vascular wall. The blood flow profile and wall stress distributions under various… More >

  • Open Access

    ABSTRACT

    Role of Intracoronary OCT in Diagnosis and Treatment of Acute Coronary Syndrome

    Haibo Jia1,*, Bo Yu1

    Molecular & Cellular Biomechanics, Vol.16, Suppl.1, pp. 23-24, 2019, DOI:10.32604/mcb.2019.05708

    Abstract Coronary angiography is the traditional standard imaging modality for visual evaluation of coronary anatomy and guidance of percutaneous coronary interventions (PCI). However, the 2-dimensional lumenogram cannot depict the arterial vessel per se and plaque characteristics, or directly assess the stenting result. Intracoronary imaging by means of intravascular ultrasound (IVUS) and optical coherence tomography (OCT) provides valuable incremental information that can be used clinically to optimize stent implantation and thereby minimize stent-related problems. Beyond guidance of stent selection and optimisation, imaging provides critical insights into the pathophysiology of acute coronary syndrome (ACS), greater clarity when confronted with angiographically ambiguous lesions and… More >

  • Open Access

    ARTICLE

    Convolution Neural Networks and Support Vector Machines for Automatic Segmentation of Intracoronary Optical Coherence Tomography

    Caining Zhang1, Huaguang Li2, Xiaoya Guo3, David Molony4, Xiaopeng Guo2, Habib Samady4, Don P. Giddens4,5, Lambros Athanasiou6, Rencan Nie2,*, Jinde Cao3,*, Dalin Tang1,*,7

    Molecular & Cellular Biomechanics, Vol.16, No.2, pp. 153-161, 2019, DOI:10.32604/mcb.2019.06873

    Abstract Cardiovascular diseases are closely associated with deteriorating atherosclerotic plaques. Optical coherence tomography (OCT) is a recently developed intravascular imaging technique with high resolution approximately 10 microns and could provide accurate quantification of coronary plaque morphology. However, tissue segmentation of OCT images in clinic is still mainly performed manually by physicians which is time consuming and subjective. To overcome these limitations, two automatic segmentation methods for intracoronary OCT image based on support vector machine (SVM) and convolutional neural network (CNN) were performed to identify the plaque region and characterize plaque components. In vivo IVUS and OCT coronary plaque data from 5… More >

  • Open Access

    ARTICLE

    Intravascular Optical Coherence Tomography Image Segmentation Based on Support Vector Machine Algorithm

    Yuxiang Huang1, Chuliu He1, Jiaqiu Wang2, Yuehong Miao1, Tongjin Zhu1, Ping Zhou1, Zhiyong Li1,2,*

    Molecular & Cellular Biomechanics, Vol.15, No.2, pp. 117-125, 2018, DOI: 10.3970/mcb.2018.02478

    Abstract Intravascular optical coherence tomography (IVOCT) is becoming more and more popular in clinical diagnosis of coronary atherosclerotic. However, reading IVOCT images is of large amount of work. This article describes a method based on image feature extraction and support vector machine (SVM) to achieve semi-automatic segmentation of IVOCT images. The image features utilized in this work including light attenuation coefficients and image textures based on gray level co-occurrence matrix. Different sets of hyper-parameters and image features were tested. This method achieved an accuracy of 83% on the test images. Single class accuracy of 89% for fibrous, 79.3% for calcification and… More >

  • Open Access

    ARTICLE

    The Correlation Between Texture Features and Fibrous Cap Thickness of Lipid-Rich Atheroma Based on Optical Coherence Tomography Imaging

    Chunliu He1, Jiaqiu Wang2, Yuxiang Huang1, Tongjing Zhu1, Yuehong Miao1, Zhiyong Li1,2*

    Molecular & Cellular Biomechanics, Vol.13, No.1, pp. 23-36, 2016, DOI:10.3970/mcb.2016.013.027

    Abstract Fibrous cap thickness (FCT) is seen as critical to plaque vulnerability. Therefore, the development of automatic algorithms for the quantification of FCT is for estimating cardiovascular risk of patients. Intravascular optical coherence tomography (IVOCT) is currently the only in vivo imaging modality with which FCT, the critical component of plaque vulnerability, can be assessed accurately. This study was aimed to discussion the correlation between the texture features of OCT images and the FCT in lipid-rich atheroma. Methods: Firstly, a full automatic segmentation algorithm based on unsupervised fuzzy c means (FCM) clustering with geometric constrains was developed to segment the ROIs… More >

Displaying 11-20 on page 2 of 18. Per Page