Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (76)
  • Open Access

    ARTICLE

    Study on Acoustic Emission Characteristics of Self-Compacting Concrete under Uniaxial Compression Test

    Yongshuai Sun1,*, Guihe Wang2, Yixuan li2

    Journal of Renewable Materials, Vol.10, No.8, pp. 2287-2302, 2022, DOI:10.32604/jrm.2022.019660

    Abstract To study the relationship between acoustic emission characteristic parameters of self-compacting concrete(SCC) and its destruction evolution, under uniaxial compression, acoustic emission(AE) tests are performed on C30 selfcompacting concrete test blocks that are preserved for 7 days and 28 days, the corresponding relationship among energy, amplitude, ring count and different failure stages of the specimens are analyzed by AE experiment, and the spatial distribution of AE in each stage is described by introducing location map. The test shows that there are two rules for the failure of SCC specimens cured for 7 days and 28 days: (1) The first failure law… More >

  • Open Access

    ARTICLE

    Compact Bat Algorithm with Deep Learning Model for Biomedical EEG EyeState Classification

    Souad Larabi-Marie-Sainte1, Eatedal Alabdulkreem2, Mohammad Alamgeer3, Mohamed K Nour4, Anwer Mustafa Hilal5,*, Mesfer Al Duhayyim6, Abdelwahed Motwakel5, Ishfaq Yaseen5

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 4589-4601, 2022, DOI:10.32604/cmc.2022.027922

    Abstract Electroencephalography (EEG) eye state classification becomes an essential tool to identify the cognitive state of humans. It can be used in several fields such as motor imagery recognition, drug effect detection, emotion categorization, seizure detection, etc. With the latest advances in deep learning (DL) models, it is possible to design an accurate and prompt EEG EyeState classification problem. In this view, this study presents a novel compact bat algorithm with deep learning model for biomedical EEG EyeState classification (CBADL-BEESC) model. The major intention of the CBADL-BEESC technique aims to categorize the presence of EEG EyeState. The CBADL-BEESC model performs feature… More >

  • Open Access

    ARTICLE

    Compact Interlaced Dual Circularly Polarized Sequentially Rotated Dielectric-Resonator Antenna Array

    Yazeed Qasaymeh*

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 4631-4643, 2022, DOI:10.32604/cmc.2022.026111

    Abstract In this study, a compact 2 × 2 interlaced sequentially rotated dual-polarized dielectric-resonator antenna array is proposed for 5.8 GHz applications. The array is composed of a novel unit elements that are made of rectangular dielectric resonator (RDR) coupled to an eye slot for generating the orthogonal modes, and to acquire circular polarization (CP) radiation. For the purpose of miniaturization and achieving dual polarized resonance, the array is fed by two interlaced ports and each port excites two radiating elements. The first port feeds horizontal elements to obtain left hand circular polarization (LHCP). The second port feeds vertical elements to obtain right hand… More >

  • Open Access

    ARTICLE

    Compact Multibeam Array with Miniaturized Butler Matrix for 5G Applications

    Suleiman A. Babale1, Muhammad K. Ishfaq2,*, Ali Raza2, Jamal Nasir3, Ahmad Fayyaz3, Umer Ijaz2

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 925-937, 2022, DOI:10.32604/cmc.2022.024711

    Abstract This paper presents the design and implementation of a miniaturized beam steering network that produces broadside beams when it is fed with a compact antenna array. Butler Matrix (BM) was used as the beam steering network. It was completely built from a miniaturized 3 dB hybrid-couplers in planar microstrip technology. It was configured by feeding the BM with a Planar Inverted-E Antenna (PIEA) array separated at 0.3 λ as against the 0.5 λ separation. This makes the BM produce a major radiation pattern at the broadside. Apart from the miniaturization, no modification was made from the BM side. However, employing effective… More >

  • Open Access

    ARTICLE

    A Compact 28 GHz Millimeter Wave Antenna for Future Wireless Communication

    Shahid Khan1,2, Adil Bashir3, Haider Ali4, Abdul Rauf5, Mohamed Marey6,*, Hala Mostafa7, Ikram Syed8

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 301-314, 2022, DOI:10.32604/cmc.2022.023397

    Abstract This article presents a novel modified chuck wagon dinner bell shaped millimeter wave (mm-wave) antenna at 28 GHz. The proposed design has ultra-thin Rogers 5880 substrate with relative permittivity of 2.2. The design consists of T shaped resonating elements and two open ended side stubs. The desired 28 GHz frequency response is achieved by careful parametric modeling of the proposed structure. The maximum achieved single element gain at the desired resonance frequency is 3.45 dBi. The efficiency of the proposed design over the operating band is more than 88%. The impedance bandwidth achieved for −10 dB reference value is nearly… More >

  • Open Access

    ARTICLE

    A Compact Self-Isolated MIMO Antenna System for 5G Mobile Terminals

    Muhannad Y. Muhsin1,*, Ali J. Salim2, Jawad K. Ali2

    Computer Systems Science and Engineering, Vol.42, No.3, pp. 919-934, 2022, DOI:10.32604/csse.2022.023102

    Abstract A compact self-isolated Multi Input Multi Output (MIMO) antenna array is presented for 5G mobile phone devices. The proposed antenna system is operating at the 3.5 GHz band (3400–3600 MHz) and consists of eight antenna elements placed along two side edges of a mobile device, which meets the current trend requirements of full-screen smartphone devices. Each antenna element is divided into two parts, a front part and back part. The front part consists of an I-shaped feeding line and a modified Hilbert fractal monopole antenna, whereas the back part is an L-shaped element shorted to the system ground by a… More >

  • Open Access

    ARTICLE

    Metamaterial-Based Compact Antenna with Defected Ground Structure for 5G and Beyond

    Md. Mushfiqur Rahman1,*, Md. Shabiul Islam1, Mohammad Tariqul Islam2, Samir Salem Al-Bawri3, Wong Hin Yong1

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 2383-2399, 2022, DOI:10.32604/cmc.2022.022150

    Abstract In this paper, a unit cell of a single-negative metamaterial structure loaded with a meander line and defected ground structure (DGS) is investigated as the principle radiating element of an antenna. The unit cell antenna causes even or odd mode resonances similar to the unit cell structure depending on the orientation of the microstrip feed used to excite the unit cell. However, the orientation which gives low-frequency resonance is considered here. The unit cell antenna is then loaded with a meander line which is parallel to the split bearing side and connects the other two sides orthogonal to the split… More >

  • Open Access

    ARTICLE

    Polarization Insensitive Broadband Zero Indexed Nano-Meta Absorber for Optical Region Applications

    Ismail Hossain1, Md Samsuzzaman2, Ahasanul Hoque3, Mohd Hafiz Baharuddin3, Norsuzlin Binti Mohd Sahar1, Mohammad Tariqul Islam3,*

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 993-1009, 2022, DOI:10.32604/cmc.2022.021435

    Abstract Broadband response metamaterial absorber (MMA) remains a challenge among researchers. A nanostructured new zero-indexed metamaterial (ZIM) absorber is presented in this study, constructed with a hexagonal shape resonator for optical region applications. The design consists of a resonator and dielectric layers made with tungsten and quartz (Fused). The proposed absorbent exhibits average absorption of more than 0.8972 (89.72%) within the visible wavelength of 450–600 nm and nearly perfect absorption of 0.99 (99%) at 461.61 nm. Based on computational analysis, the proposed absorber can be characterized as ZIM. The developments of ZIM absorbers have demonstrated plasmonic resonance characteristics and a perfect… More >

  • Open Access

    ARTICLE

    Mechanical Properties and Microcosmic Properties of Self-Compacting Concrete Modified by Compound Admixtures

    Song Yang1, Bing Qi1, Zubin Ai1, Zhensheng Cao1, Shiqin He2,*, Lijun Li3

    Journal of Renewable Materials, Vol.10, No.4, pp. 897-908, 2022, DOI:10.32604/jrm.2022.016653

    Abstract It has become a research hotspot to explore raw material substitutes of concrete. It is important to research the mechanical properties of self-compacting concrete (SCC) with slag powder (SP) and rubber particle (RP) replacing cement and coarse aggregate, respectively. 12 kinds of composite modified self-compacting concrete (CMSCC) specimens were prepared by using 10%, 20% and 30% SP and 30%, 40%, 50% and 60% RP. The rheological properties, mechanical properties and microstructure of the CMSCC were investigated. Results indicate that the workability, compressive strength, splitting tensile strength and flexural strength of CMSCC prepared by 20% SP and less than 40% RP… More >

  • Open Access

    ARTICLE

    A Compact Tri-Band Antenna Based on Inverted-L Stubs for Smart Devices

    Niamat Hussain1, Anees Abbas1, Sang-Myeong Park1, Seong Gyoon Park2, Nam Kim1,*

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 3321-3331, 2022, DOI:10.32604/cmc.2022.020688

    Abstract We designed and constructed a novel, compact tri-band monopole antenna for intelligent devices. Multiband behavior was achieved by placing inverted-L shaped stubs of various lengths in a triangular monopole antenna fed by a coplanar waveguide. The resonance frequency of each band can be controlled by varying the length of the corresponding stub. Three bands, at 2.4 (2.37–2.51), 3.5 (3.34–3.71), and 5.5 (4.6–6.4) GHz, were easily obtained using three stubs of different lengths. For miniaturization, a portion of the longest stub (at 2.4 GHz) was printed on the opposite side of the substrate, and connected to the main stub via a… More >

Displaying 21-30 on page 3 of 76. Per Page