Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (225)
  • Open Access

    ARTICLE

    Concurrent Atomistic/Continuum Simulation of Thermo-Mechanical Coupling Phenomena

    Xianqiao Wang1, James D. Lee1

    CMES-Computer Modeling in Engineering & Sciences, Vol.62, No.2, pp. 150-170, 2010, DOI:10.3970/cmes.2010.062.150

    Abstract The concurrent methods for coupling molecular dynamics with continuum thermodynamics offer a myriad of challenging problems, mostly related with energy transmission, wave reflection, and damage propagation at the interfaces between the continuum description and the discrete description. In this work, by virtue of the atomistic field theory (AFT), we present an analysis to reconcile the compatibility between atomic region and continuum region and to calculate the matching temperature field of a heat conduction problem in a concurrent atomistic/continuum system. First, formulation of AFT with finite temperature and its corresponding finite element implementation are briefly introduced. Then we develop a new… More >

  • Open Access

    ARTICLE

    Efficient Cohomology Computation for Electromagnetic Modeling

    Paweł Dłotko1, Ruben Specogna2

    CMES-Computer Modeling in Engineering & Sciences, Vol.60, No.3, pp. 247-278, 2010, DOI:10.3970/cmes.2010.060.247

    Abstract The systematic potential design is of high importance in computational electromagnetics. For example, it is well known that when the efficient eddy-current formulations based on a magnetic scalar potential are employed in problems which involve conductive regions with holes, the so-calledthick cutsare needed to make the boundary value problem well defined. Therefore, a considerable effort has been invested over the past twenty-five years to develop fast and general algorithms to compute thick cuts automatically. Nevertheless, none of the approaches proposed in literature meet all the requirements of being automatic, computationally efficient and general. In this paper, an automatic, computationally efficient… More >

  • Open Access

    ARTICLE

    Discrete Constitutive Equations over Hexahedral Grids for Eddy-current Problems

    L. Codecasa1, R. Specogna2, F. Trevisan3

    CMES-Computer Modeling in Engineering & Sciences, Vol.31, No.3, pp. 129-144, 2008, DOI:10.3970/cmes.2008.031.129

    Abstract In the paper we introduce a methodology to construct discrete constitutive matrices relating magnetic fluxes with magneto motive forces (reluctance matrix) and electro motive forces with currents (conductance matrix) needed for discretizing eddy current problems over hexahedral primal grids by means of the Finite Integration Technique (FIT) and the Cell Method (CM). We prove that, unlike the mass matrices of Finite Elements, the proposed matrices ensure both the stability and the consistency of the discrete equations introduced in FIT and CM. More >

  • Open Access

    ARTICLE

    A Methodology and Associated CAD Tools for Support of Concurrent Design of MEMS

    B. F. Romanowicz1, M. H. Zaman1, S. F. Bart1, V. L. Rabinovich1, I. Tchertkov1, S. Zhang1, M. G. da Silva1, M. Deshpande1, K. Greiner1, J. R. Gilbert1, Shawn Cunningham2

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.1, pp. 45-64, 2000, DOI:10.3970/cmes.2000.001.045

    Abstract Development of micro-electro-mechanical systems (MEMS) products is currently hampered by the need for design aids, which can assist in integration of all domains of the design. The cross-disciplinary character of microsystems requires a top-down approach to system design which, in turn, requires designers from many areas to work together in order to understand the effects of one sub-system on another. This paper describes current research on a methodology and tool-set which directly support such an integrated design process. More >

  • Open Access

    ARTICLE

    Optimal Building Frame Column Design Based on the Genetic Algorithm

    Tao Shen1,*, Yukari Nagai1, Chan Gao2

    CMC-Computers, Materials & Continua, Vol.58, No.3, pp. 641-651, 2019, DOI:10.32604/cmc.2019.04885

    Abstract Building structure is like the skeleton of the building, it bears the effects of various forces and forms a supporting system, which is the material basis on which the building depends. Hence building structure design is a vital part in architecture design, architects often explore novel applications of their technologies for building structure innovation. However, such searches relied on experiences, expertise or gut feeling. In this paper, a new design method for the optimal building frame column design based on the genetic algorithm is proposed. First of all, in order to construct the optimal model of the building frame column,… More >

Displaying 221-230 on page 23 of 225. Per Page