Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (350)
  • Open Access

    ARTICLE

    A Temperature-Indexed Concrete Damage Plasticity Model Incorporating Bond-Slip Mechanism for Thermo-Mechanical Analysis of Reinforced Concrete Structures

    Wu Feng1,2,*, Tengku Anita Raja Hussin1, Xu Yang3

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.071664 - 08 January 2026

    Abstract This study investigates the thermo–mechanical behavior of C40 concrete and reinforced concrete subjected to elevated temperatures up to 700°C by integrating experimental testing and advanced numerical modeling. A temperature-indexed Concrete Damage Plasticity (CDP) framework incorporating bond–slip effects was developed in Abaqus to capture both global stress–strain responses and localized damage evolution. Uniaxial compression tests on thermally exposed cylinders provided residual strength data and failure observations for model calibration and validation. Results demonstrated a distinct two-stage degradation regime: moderate stiffness and strength reduction up to ~400°C, followed by sharp deterioration beyond 500°C–600°C, with residual capacity at… More >

  • Open Access

    ARTICLE

    Long-Term Bridge Health Evaluation Using Resonant Frequency Changes under Random Loading Conditions

    Thi Kim Chi Duong1, Bich-Ngoc. Mach2, Hoa-Cuc. Nguyen2, Thi Nhu Quynh Trinh2, Thanh Q. Nguyen3,4,*

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.070185 - 08 January 2026

    Abstract This study explores theoretical insights and experimental results on monitoring load-carrying capacity degradation in bridge spans through frequency analysis. Experiments were conducted on real bridge structures, including the Binh Thuan Bridge, focusing on analyzing the power spectral density (PSD) of vibration signals under random traffic loads. Detailed digital models of various bridge spans with different structural designs and construction periods were developed to ensure diversity. The study utilized PSD to analyze the vibration signals from the bridge spans under various loading conditions, identifying the vibration frequencies and the corresponding response regions. The research correlated the… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Damage Behavior in Graphene-Reinforced Aluminum Matrix Composite Armatures under Multi-Physical Field Coupling

    Junwen Huo, Haicheng Liang, Weiye Dong, Xiaoming Du*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.073285 - 09 December 2025

    Abstract With the rapid advancement of electromagnetic launch technology, enhancing the structural stability and thermal resistance of armatures has become essential for improving the overall efficiency and reliability of railgun systems. Traditional aluminum alloy armatures often suffer from severe ablation, deformation, and uneven current distribution under high pulsed currents, which limit their performance and service life. To address these challenges, this study employs the Johnson–Cook constitutive model and the finite element method to develop armature models of aluminum matrix composites with varying heterogeneous graphene volume fractions. The temperature, stress, and strain of the armatures during operation… More >

  • Open Access

    ARTICLE

    Atomistic Simulation Study on Spall Failure and Damage Evolution in Single-Crystalline Ta at Elevated Temperatures

    Yuntian Wang1,2, Taohua Liang1,2, Yuan Zhou1,2, Weimei Shi1,2, Lijuan Huang1,2, Yuzhu Guo3,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-26, 2026, DOI:10.32604/cmc.2025.071624 - 09 December 2025

    Abstract This investigation utilizes non-equilibrium molecular dynamics (NEMD) simulations to explore shock-induced spallation in single-crystal tantalum across shock velocities of 0.75–4 km/s and initial temperatures from 300 to 2000 K. Two spallation modes emerge: classical spallation for shock velocity below 1.5 km/s, with solid-state reversible Body-Centered Cubic (BCC) to Face-Centered Cubic (FCC) or Hexagonal Close-Packed (HCP) phase transformations and discrete void nucleation-coalescence; micro-spallation for shock velocity above 3.0 km/s, featuring complete shock-induced melting and fragmentation, with a transitional regime (2.0–2.5 km/s) of partial melting. Spall strength decreases monotonically with temperature due to thermal softening. Elevated temperatures More >

  • Open Access

    ARTICLE

    Multiaxial Fatigue Life Prediction of Metallic Specimens Using Deep Learning Algorithms

    Jing Yang1, Zhiming Liu1,*, Xingchao Li2, Zhongyao Wang3, Beitong Li1, Kaiyang Liu1, Wang Long4

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-18, 2026, DOI:10.32604/cmc.2025.068353 - 10 November 2025

    Abstract Accurately predicting fatigue life under multiaxial fatigue damage conditions is essential for ensuring the safety of critical components in service. However, due to the complexity of fatigue failure mechanisms, achieving accurate multiaxial fatigue life predictions remains challenging. Traditional multiaxial fatigue prediction models are often limited by specific material properties and loading conditions, making it difficult to maintain reliable life prediction results beyond these constraints. This paper presents a study on the impact of seven key feature quantities on multiaxial fatigue life, using Convolutional Neural Networks (CNN), Long Short-Term Memory Networks (LSTM), and Fully Connected Neural… More >

  • Open Access

    ARTICLE

    Numerical Exploration on Load Transfer Characteristics and Optimization of Multi-Layer Composite Pavement Structures Based on Improved Transfer Matrix Method

    Guo-Zhi Li1, Hua-Ping Wang1,2,*, Si-Kai Wang1, Jing-Cheng Zhou1, Ping Xiang3,4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3165-3195, 2025, DOI:10.32604/cmes.2025.072750 - 23 December 2025

    Abstract Transportation structures such as composite pavements and railway foundations typically consist of multi-layered media designed to withstand high bearing capacity. A theoretical understanding of load transfer mechanisms in these multi-layer composites is essential, as it offers intuitive insights into parametric influences and facilitates enhanced structural performance. This paper employs an improved transfer matrix method to address the limitations of existing theoretical approaches for analyzing multi-layer composite structures. By establishing a two-dimensional composite pavement model, it investigates load transfer characteristics and validates the accuracy through finite element simulation. The proposed method offers a straightforward analytical approach… More >

  • Open Access

    ARTICLE

    Stress Intensity Factor, Plastic Limit Pressure and Service Life Assessment of a Transportation-Damaged Pipe with a High-Aspect-Ratio Axial Surface Crack

    Božo Damjanović*, Pejo Konjatić, Marko Katinić

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1735-1753, 2025, DOI:10.32604/cmes.2025.072256 - 26 November 2025

    Abstract Ensuring the structural integrity of piping systems is crucial in industrial operations to prevent catastrophic failures and minimize shutdown time. This study investigates a transportation-damaged pipe exposed to high-temperature conditions and cyclic loading, representing a realistic challenge in plant operation. The objective was to evaluate the service life and integrity assessment parameters of the damaged pipe, subjected to 22,000 operational cycles under two daily charge and discharge conditions. The flaw size in the damaged pipe was determined based on a failure assessment procedure, ensuring a conservative and reliable input. The damage was characterized as a… More >

  • Open Access

    ARTICLE

    Influence Mechanism of Liquid Level on Oil Tank Structures and Damage Risk Prevention Based on Shell Theory

    Si-Kai Wang1, Ti-Cai Wang1, Di-Fei Yi2, Jia Rui3, Peng-Fei Cao4, Hua-Ping Wang1,5,*

    Structural Durability & Health Monitoring, Vol.19, No.6, pp. 1411-1432, 2025, DOI:10.32604/sdhm.2025.070034 - 17 November 2025

    Abstract As a key storage facility, the structural safety of large oil tanks is directly related to the stable operation of the energy system. The static pressure caused by the change of liquid level is one of the main loads in the service process of storage tanks, which determines the structural deformation and damage risk. To explore the structural deformation properties under the change of liquid levels and provide a theoretical basis for the prevention and control of damage risk, this paper systematically analyzes the mechanical response of storage tanks under the pressures induced by different… More > Graphic Abstract

    Influence Mechanism of Liquid Level on Oil Tank Structures and Damage Risk Prevention Based on Shell Theory

  • Open Access

    REVIEW

    Structural Health Monitoring Using Image Processing and Advanced Technologies for the Identification of Deterioration of Building Structure: A Review

    Kavita Bodke1,*, Sunil Bhirud1, Keshav Kashinath Sangle2

    Structural Durability & Health Monitoring, Vol.19, No.6, pp. 1547-1562, 2025, DOI:10.32604/sdhm.2025.069239 - 17 November 2025

    Abstract Structural Health Monitoring (SHM) systems play a key role in managing buildings and infrastructure by delivering vital insights into their strength and structural integrity. There is a need for more efficient techniques to detect defects, as traditional methods are often prone to human error, and this issue is also addressed through image processing (IP). In addition to IP, automated, accurate, and real- time detection of structural defects, such as cracks, corrosion, and material degradation that conventional inspection techniques may miss, is made possible by Artificial Intelligence (AI) technologies like Machine Learning (ML) and Deep Learning… More > Graphic Abstract

    Structural Health Monitoring Using Image Processing and Advanced Technologies for the Identification of Deterioration of Building Structure: A Review

  • Open Access

    PROCEEDINGS

    Simulation of Tensile Progressive Damage in Thick Ply-Drop Composites with Open Holes

    Zhaoqi Li, Xuan Liu, Hengkong Zhao, Zhen Zhang*, Yan Li

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.4, pp. 1-1, 2025, DOI:10.32604/icces.2025.012239

    Abstract The growing use of ultra-thick composite laminates in aerospace structures demands a deeper understanding of their unique damage mechanisms under tensile loading, which differ significantly from those of thin laminates. This study introduces a novel 3D progressive damage model combining solid elements, the LaRC05 3D failure criterion (enhanced with through-thickness in-situ strengthening effects), and a mixed-mode cohesive zone model (CZM) to predict interlaminar delamination. The model captures the interaction between in-plane damage and through-thickness failure modes in open-hole ultra-thick composites, and addresses stress redistribution, localized buckling, delamination migration, and in-situ strength enhancement. Mesh sensitivity analysis… More >

Displaying 1-10 on page 1 of 350. Per Page