Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (57)
  • Open Access

    ARTICLE

    Stock Market Index Prediction Using Machine Learning and Deep Learning Techniques

    Abdus Saboor1,4, Arif Hussain2, Bless Lord Y. Agbley3, Amin ul Haq3,*, Jian Ping Li3, Rajesh Kumar1,*

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1325-1344, 2023, DOI:10.32604/iasc.2023.038849

    Abstract Stock market forecasting has drawn interest from both economists and computer scientists as a classic yet difficult topic. With the objective of constructing an effective prediction model, both linear and machine learning tools have been investigated for the past couple of decades. In recent years, recurrent neural networks (RNNs) have been observed to perform well on tasks involving sequence-based data in many research domains. With this motivation, we investigated the performance of long-short term memory (LSTM) and gated recurrent units (GRU) and their combination with the attention mechanism; LSTM + Attention, GRU + Attention, and LSTM + GRU + Attention.… More >

  • Open Access

    ARTICLE

    An Ensemble Machine Learning Technique for Stroke Prognosis

    Mesfer Al Duhayyim1,*, Sidra Abbas2,*, Abdullah Al Hejaili3, Natalia Kryvinska4, Ahmad Almadhor5, Uzma Ghulam Mohammad6

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 413-429, 2023, DOI:10.32604/csse.2023.037127

    Abstract Stroke is a life-threatening disease usually due to blockage of blood or insufficient blood flow to the brain. It has a tremendous impact on every aspect of life since it is the leading global factor of disability and morbidity. Strokes can range from minor to severe (extensive). Thus, early stroke assessment and treatment can enhance survival rates. Manual prediction is extremely time and resource intensive. Automated prediction methods such as Modern Information and Communication Technologies (ICTs), particularly those in Machine Learning (ML) area, are crucial for the early diagnosis and prognosis of stroke. Therefore, this research proposed an ensemble voting… More >

  • Open Access

    ARTICLE

    Numérique versus symbolique

    Dialogue ontologique entre deux approches

    Hélène Mathian1, Lena Sanders2

    Revue Internationale de Géomatique, Vol.31, No.1, pp. 21-45, 2022, DOI:10.3166/RIG31.21-45

    Abstract The aim of this article is to compare a statistical approach, “geometric data analysis” (GDA), and a simulation approach, the multi-agent systems (MAS), considered as representative, respectively, of a numerical and a symbolic approach of modelling. The case study concerns segregation of scholar space in the Parisian area. First the different steps leading from a thematic question to the development of an operational model to analyze this question are presented. The central and essential role of a conceptual framework at the interface of both is shown. Indeed, before operationalisation, it is necessary to verify the compatibility between the theoretical backgrounds… More >

  • Open Access

    ARTICLE

    An Improved Granulated Convolutional Neural Network Data Analysis Model for COVID-19 Prediction

    Meilin Wu1,2, Lianggui Tang1,2,*, Qingda Zhang1,2, Ke Yan1,2

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 179-198, 2023, DOI:10.32604/iasc.2023.036684

    Abstract As COVID-19 poses a major threat to people’s health and economy, there is an urgent need for forecasting methodologies that can anticipate its trajectory efficiently. In non-stationary time series forecasting jobs, there is frequently a hysteresis in the anticipated values relative to the real values. The multilayer deep-time convolutional network and a feature fusion network are combined in this paper’s proposal of an enhanced Multilayer Deep Time Convolutional Neural Network (MDTCNet) for COVID-19 prediction to address this problem. In particular, it is possible to record the deep features and temporal dependencies in uncertain time series, and the features may then… More >

  • Open Access

    ARTICLE

    Cognitive Granular-Based Path Planning and Tracking for Intelligent Vehicle with Multi-Segment Bezier Curve Stitching

    Xudong Wang1,2, Xueshuai Qin1, Huiyan Zhang2,*, Luis Ismael Minchala3

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 385-400, 2023, DOI:10.32604/iasc.2023.036633

    Abstract Unmanned vehicles are currently facing many difficulties and challenges in improving safety performance when running in complex urban road traffic environments, such as low intelligence and poor comfort performance in the driving process. The real-time performance of vehicles and the comfort requirements of passengers in path planning and tracking control of unmanned vehicles have attracted more and more attentions. In this paper, in order to improve the real-time performance of the autonomous vehicle planning module and the comfort requirements of passengers that a local granular-based path planning method and tracking control based on multi-segment Bezier curve splicing and model predictive… More >

  • Open Access

    ARTICLE

    On a Novel Extended Lomax Distribution with Asymmetric Properties and Its Statistical Applications

    Aisha Fayomi1, Christophe Chesneau2,*, Farrukh Jamal3, Ali Algarni1

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2371-2403, 2023, DOI:10.32604/cmes.2023.027000

    Abstract In this article, we highlight a new three-parameter heavy-tailed lifetime distribution that aims to extend the modeling possibilities of the Lomax distribution. It is called the extended Lomax distribution. The considered distribution naturally appears as the distribution of a transformation of a random variable following the logweighted power distribution recently introduced for percentage or proportion data analysis purposes. As a result, its cumulative distribution has the same functional basis as that of the Lomax distribution, but with a novel special logarithmic term depending on several parameters. The modulation of this logarithmic term reveals new types of asymetrical shapes, implying a… More >

  • Open Access

    ARTICLE

    Energy Theft Detection in Smart Grids with Genetic Algorithm-Based Feature Selection

    Muhammad Umair1,*, Zafar Saeed1, Faisal Saeed2, Hiba Ishtiaq1, Muhammad Zubair1, Hala Abdel Hameed3,4

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5431-5446, 2023, DOI:10.32604/cmc.2023.033884

    Abstract As big data, its technologies, and application continue to advance, the Smart Grid (SG) has become one of the most successful pervasive and fixed computing platforms that efficiently uses a data-driven approach and employs efficient information and communication technology (ICT) and cloud computing. As a result of the complicated architecture of cloud computing, the distinctive working of advanced metering infrastructures (AMI), and the use of sensitive data, it has become challenging to make the SG secure. Faults of the SG are categorized into two main categories, Technical Losses (TLs) and Non-Technical Losses (NTLs). Hardware failure, communication issues, ohmic losses, and… More >

  • Open Access

    ARTICLE

    Identifying Cancer Disease Using Softmax-Feed Forward Recurrent Neural Classification

    P. Saranya*, P. Asha

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 1137-1149, 2023, DOI:10.32604/iasc.2023.031470

    Abstract In today’s growing modern world environment, as human food activities are changing, it is affecting human health, thus leading to diseases like cancer. Cancer is a complex disease with many subtypes that affect human health without premature treatment and cause death. So the analysis of early diagnosis and prognosis of cancer studies can improve clinical management by analyzing various features of observation, which has become necessary to classify the type in cancer research. The research needs importance to organize the risk of the cancer patients based on data analysis to predict the result of premature treatment. This paper introduces a… More >

  • Open Access

    ARTICLE

    Sigmoidal Particle Swarm Optimization for Twitter Sentiment Analysis

    Sandeep Kumar1, Muhammad Badruddin Khan2, Mozaherul Hoque Abul Hasanat2, Abdul Khader Jilani Saudagar2,*, Abdullah AlTameem2, Mohammed AlKhathami2

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 897-914, 2023, DOI:10.32604/cmc.2023.031867

    Abstract Social media, like Twitter, is a data repository, and people exchange views on global issues like the COVID-19 pandemic. Social media has been shown to influence the low acceptance of vaccines. This work aims to identify public sentiments concerning the COVID-19 vaccines and better understand the individual’s sensitivities and feelings that lead to achievement. This work proposes a method to analyze the opinion of an individual’s tweet about the COVID-19 vaccines. This paper introduces a sigmoidal particle swarm optimization (SPSO) algorithm. First, the performance of SPSO is measured on a set of 12 benchmark problems, and later it is deployed… More >

  • Open Access

    ARTICLE

    A Data-Driven Oil Production Prediction Method Based on the Gradient Boosting Decision Tree Regression

    Hongfei Ma1,*, Wenqi Zhao2, Yurong Zhao1, Yu He1

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.3, pp. 1773-1790, 2023, DOI:10.32604/cmes.2022.020498

    Abstract Accurate prediction of monthly oil and gas production is essential for oil enterprises to make reasonable production plans, avoid blind investment and realize sustainable development. Traditional oil well production trend prediction methods are based on years of oil field production experience and expertise, and the application conditions are very demanding. With the rapid development of artificial intelligence technology, big data analysis methods are gradually applied in various sub-fields of the oil and gas reservoir development. Based on the data-driven artificial intelligence algorithm Gradient Boosting Decision Tree (GBDT), this paper predicts the initial single-layer production by considering geological data, fluid PVT… More >

Displaying 1-10 on page 1 of 57. Per Page