Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (43)
  • Open Access

    ARTICLE

    Defending against Topological Information Probing for Online Decentralized Web Services

    Xinli Hao1, Qingyuan Gong2, Yang Chen1,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073155 - 12 January 2026

    Abstract Topological information is very important for understanding different types of online web services, in particular, for online social networks (OSNs). People leverage such information for various applications, such as social relationship modeling, community detection, user profiling, and user behavior prediction. However, the leak of such information will also pose severe challenges for user privacy preserving due to its usefulness in characterizing users. Large-scale web crawling-based information probing is a representative way for obtaining topological information of online web services. In this paper, we explore how to defend against topological information probing for online web services,… More >

  • Open Access

    ARTICLE

    FRF-BiLSTM: Recognising and Mitigating DDoS Attacks through a Secure Decentralized Feature Optimized Federated Learning Approach

    Sushruta Mishra1, Sunil Kumar Mohapatra2, Kshira Sagar Sahoo3, Anand Nayyar4, Tae-Kyung Kim5,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072493 - 12 January 2026

    Abstract With an increase in internet-connected devices and a dependency on online services, the threat of Distributed Denial of Service (DDoS) attacks has become a significant concern in cybersecurity. The proposed system follows a multi-step process, beginning with the collection of datasets from different edge devices and network nodes. To verify its effectiveness, experiments were conducted using the CICDoS2017, NSL-KDD, and CICIDS benchmark datasets alongside other existing models. Recursive feature elimination (RFE) with random forest is used to select features from the CICDDoS2019 dataset, on which a BiLSTM model is trained on local nodes. Local models… More >

  • Open Access

    ARTICLE

    Beyond Wi-Fi 7: Enhanced Decentralized Wireless Local Area Networks with Federated Reinforcement Learning

    Rashid Ali1,*, Alaa Omran Almagrabi2,3

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.070224 - 12 January 2026

    Abstract Wi-Fi technology has evolved significantly since its introduction in 1997, advancing to Wi-Fi 6 as the latest standard, with Wi-Fi 7 currently under development. Despite these advancements, integrating machine learning into Wi-Fi networks remains challenging, especially in decentralized environments with multiple access points (mAPs). This paper is a short review that summarizes the potential applications of federated reinforcement learning (FRL) across eight key areas of Wi-Fi functionality, including channel access, link adaptation, beamforming, multi-user transmissions, channel bonding, multi-link operation, spatial reuse, and multi-basic servic set (multi-BSS) coordination. FRL is highlighted as a promising framework for More >

  • Open Access

    ARTICLE

    A Decentralized Identity Framework for Secure Federated Learning in Healthcare

    Samuel Acheme*, Glory Nosawaru Edegbe

    Journal of Cyber Security, Vol.8, pp. 1-31, 2026, DOI:10.32604/jcs.2026.073923 - 07 January 2026

    Abstract Federated learning (FL) enables collaborative model training across decentralized datasets, thus maintaining the privacy of training data. However, FL remains vulnerable to malicious actors, posing significant risks in privacy-sensitive domains like healthcare. Previous machine learning trust frameworks, while promising, often rely on resource-intensive blockchain ledgers, introducing computational overhead and metadata leakage risks. To address these limitations, this study presents a novel Decentralized Identity (DID) framework for mutual authentication that establishes verifiable trust among participants in FL without dependence on centralized authorities or high-cost blockchain ledgers. The proposed system leverages Decentralized Identifiers (DIDs) and Verifiable Credentials… More >

  • Open Access

    ARTICLE

    IOTA-Based Authentication for IoT Devices in Satellite Networks

    D. Bernal*, O. Ledesma, P. Lamo, J. Bermejo

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-39, 2026, DOI:10.32604/cmc.2025.069746 - 10 November 2025

    Abstract This work evaluates an architecture for decentralized authentication of Internet of Things (IoT) devices in Low Earth Orbit (LEO) satellite networks using IOTA Identity technology. To the best of our knowledge, it is the first proposal to integrate IOTA’s Directed Acyclic Graph (DAG)-based identity framework into satellite IoT environments, enabling lightweight and distributed authentication under intermittent connectivity. The system leverages Decentralized Identifiers (DIDs) and Verifiable Credentials (VCs) over the Tangle, eliminating the need for mining and sequential blocks. An identity management workflow is implemented that supports the creation, validation, deactivation, and reactivation of IoT devices,… More >

  • Open Access

    ARTICLE

    Towards Decentralized IoT Security: Optimized Detection of Zero-Day Multi-Class Cyber-Attacks Using Deep Federated Learning

    Misbah Anwer1,*, Ghufran Ahmed1, Maha Abdelhaq2, Raed Alsaqour3, Shahid Hussain4, Adnan Akhunzada5,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-15, 2026, DOI:10.32604/cmc.2025.068673 - 10 November 2025

    Abstract The exponential growth of the Internet of Things (IoT) has introduced significant security challenges, with zero-day attacks emerging as one of the most critical and challenging threats. Traditional Machine Learning (ML) and Deep Learning (DL) techniques have demonstrated promising early detection capabilities. However, their effectiveness is limited when handling the vast volumes of IoT-generated data due to scalability constraints, high computational costs, and the costly time-intensive process of data labeling. To address these challenges, this study proposes a Federated Learning (FL) framework that leverages collaborative and hybrid supervised learning to enhance cyber threat detection in… More >

  • Open Access

    ARTICLE

    ORTHRUS: A Model for a Decentralized and Fair Data Marketplace Supporting Two Types of Output

    Su Jin Shin1, Sang Uk Shin2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2787-2819, 2025, DOI:10.32604/cmes.2025.072602 - 26 November 2025

    Abstract To reconstruct vehicle accidents, data from the time of the incident—such as pre-collision speed and collision point—is essential. This data is collected and generated through various sensors installed in the vehicle. However, it may contain sensitive information about the vehicle owner. Consequently, vehicle owners tend to be reluctant to provide their vehicle data due to concerns about personal information exposure. Therefore, extensive research has been conducted on secure vehicle data trading models. Existing models primarily utilize centralized approaches, leading to issues such as single points of failure, data leakage, and manipulation. To address these problems,… More >

  • Open Access

    ARTICLE

    Secure Malicious Node Detection in Decentralized Healthcare Networks Using Cloud and Edge Computing with Blockchain-Enabled Federated Learning

    Raj Sonani1, Reham Alhejaili2,*, Pushpalika Chatterjee3, Khalid Hamad Alnafisah4, Jehad Ali5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3169-3189, 2025, DOI:10.32604/cmes.2025.070225 - 30 September 2025

    Abstract Healthcare networks are transitioning from manual records to electronic health records, but this shift introduces vulnerabilities such as secure communication issues, privacy concerns, and the presence of malicious nodes. Existing machine and deep learning-based anomalies detection methods often rely on centralized training, leading to reduced accuracy and potential privacy breaches. Therefore, this study proposes a Blockchain-based-Federated Learning architecture for Malicious Node Detection (BFL-MND) model. It trains models locally within healthcare clusters, sharing only model updates instead of patient data, preserving privacy and improving accuracy. Cloud and edge computing enhance the model’s scalability, while blockchain ensures More >

  • Open Access

    ARTICLE

    Quantum-Resilient Blockchain for Secure Digital Identity Verification in DeFi

    Ahmed I. Alutaibi*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 875-903, 2025, DOI:10.32604/cmc.2025.067078 - 29 August 2025

    Abstract The rapid evolution of quantum computing poses significant threats to traditional cryptographic schemes, particularly in Decentralized Finance (DeFi) systems that rely on legacy mechanisms like RSA and ECDSA for digital identity verification. This paper proposes a quantum-resilient, blockchain-based identity verification framework designed to address critical challenges in privacy preservation, scalability, and post-quantum security. The proposed model integrates Post-quantum Cryptography (PQC), specifically lattice-based cryptographic primitives, with Decentralized Identifiers (DIDs) and Zero-knowledge Proofs (ZKPs) to ensure verifiability, anonymity, and resistance to quantum attacks. A dual-layer architecture is introduced, comprising an identity layer for credential generation and validation,… More >

  • Open Access

    ARTICLE

    Decentralized Authentication and Secure Distributed File Storage for Healthcare Systems Using Blockchain and IPFS

    Maazen Alsabaan1, Jasmin Praful Bharadiya2, Vishwanath Eswarakrishnan3, Adnan Mustafa Cheema4, Zaid Bin Faheem5, Jehad Ali6,*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1135-1160, 2025, DOI:10.32604/cmc.2025.066969 - 29 August 2025

    Abstract The healthcare sector involves many steps to ensure efficient care for patients, such as appointment scheduling, consultation plans, online follow-up, and more. However, existing healthcare mechanisms are unable to facilitate a large number of patients, as these systems are centralized and hence vulnerable to various issues, including single points of failure, performance bottlenecks, and substantial monetary costs. Furthermore, these mechanisms are unable to provide an efficient mechanism for saving data against unauthorized access. To address these issues, this study proposes a blockchain-based authentication mechanism that authenticates all healthcare stakeholders based on their credentials. Furthermore, also… More >

Displaying 1-10 on page 1 of 43. Per Page