Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,955)
  • Open Access

    ARTICLE

    A Mixed Method for Feature Extraction Based on Resonance Filtering

    Xia Zhang1,2, Wei Lu3, Youwei Ding1,*, Yihua Song1, Jinyue Xia4

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3141-3154, 2023, DOI:10.32604/iasc.2023.027219 - 17 August 2022

    Abstract Machine learning tasks such as image classification need to select the features that can describe the image well. The image has individual features and common features, and they are interdependent. If only the individual features of the image are emphasized, the neural network is prone to overfitting. If only the common features of images are emphasized, neural networks will not be able to adapt to diversified learning environments. In order to better integrate individual features and common features, based on skeleton and edge individual features extraction, this paper designed a mixed feature extraction method based… More >

  • Open Access

    ARTICLE

    ASL Recognition by the Layered Learning Model Using Clustered Groups

    Jungsoo Shin, Jaehee Jung*

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 51-68, 2023, DOI:10.32604/csse.2023.030647 - 16 August 2022

    Abstract American Sign Language (ASL) images can be used as a communication tool by determining numbers and letters using the shape of the fingers. Particularly, ASL can have an key role in communication for hearing-impaired persons and conveying information to other persons, because sign language is their only channel of expression. Representative ASL recognition methods primarily adopt images, sensors, and pose-based recognition techniques, and employ various gestures together with hand-shapes. This study briefly reviews these attempts at ASL recognition and provides an improved ASL classification model that attempts to develop a deep learning method with meta-layers. More >

  • Open Access

    ARTICLE

    Hybrid Bacterial Foraging Optimization with Sparse Autoencoder for Energy Systems

    Helen Josephine V L1, Ramchand Vedaiyan2, V. M. Arul Xavier3, Joy Winston J4, A. Jegatheesan5, D. Lakshmi6, Joshua Samuel Raj7,*

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 701-714, 2023, DOI:10.32604/csse.2023.030611 - 16 August 2022

    Abstract The Internet of Things (IoT) technologies has gained significant interest in the design of smart grids (SGs). The increasing amount of distributed generations, maturity of existing grid infrastructures, and demand network transformation have received maximum attention. An essential energy storing model mostly the electrical energy stored methods are developing as the diagnoses for its procedure was becoming further compelling. The dynamic electrical energy stored model using Electric Vehicles (EVs) is comparatively standard because of its excellent electrical property and flexibility however the chance of damage to its battery was there in event of overcharging or… More >

  • Open Access

    ARTICLE

    Sailfish Optimization with Deep Learning Based Oral Cancer Classification Model

    Mesfer Al Duhayyim1,*, Areej A. Malibari2, Sami Dhahbi3, Mohamed K. Nour4, Isra Al-Turaiki5, Marwa Obayya6, Abdullah Mohamed7

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 753-767, 2023, DOI:10.32604/csse.2023.030556 - 16 August 2022

    Abstract Recently, computer aided diagnosis (CAD) model becomes an effective tool for decision making in healthcare sector. The advances in computer vision and artificial intelligence (AI) techniques have resulted in the effective design of CAD models, which enables to detection of the existence of diseases using various imaging modalities. Oral cancer (OC) has commonly occurred in head and neck globally. Earlier identification of OC enables to improve survival rate and reduce mortality rate. Therefore, the design of CAD model for OC detection and classification becomes essential. Therefore, this study introduces a novel Computer Aided Diagnosis for… More >

  • Open Access

    ARTICLE

    Intelligent Cybersecurity Classification Using Chaos Game Optimization with Deep Learning Model

    Eatedal Alabdulkreem1, Saud S. Alotaibi2, Mohammad Alamgeer3,4, Radwa Marzouk5, Anwer Mustafa Hilal6,*, Abdelwahed Motwakel6, Abu Sarwar Zamani6, Mohammed Rizwanullah6

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 971-983, 2023, DOI:10.32604/csse.2023.030362 - 16 August 2022

    Abstract Cyberattack detection has become an important research domain owing to increasing number of cybercrimes in recent years. Both Machine Learning (ML) and Deep Learning (DL) classification models are useful in effective identification and classification of cyberattacks. In addition, the involvement of hyper parameters in DL models has a significantly influence upon the overall performance of the classification models. In this background, the current study develops Intelligent Cybersecurity Classification using Chaos Game Optimization with Deep Learning (ICC-CGODL) Model. The goal of the proposed ICC-CGODL model is to recognize and categorize different kinds of attacks made upon More >

  • Open Access

    ARTICLE

    Artificial Fish Swarm Optimization with Deep Learning Enabled Opinion Mining Approach

    Saud S. Alotaibi1, Eatedal Alabdulkreem2, Sami Althahabi3, Manar Ahmed Hamza4,*, Mohammed Rizwanullah4, Abu Sarwar Zamani4, Abdelwahed Motwakel4, Radwa Marzouk5

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 737-751, 2023, DOI:10.32604/csse.2023.030170 - 16 August 2022

    Abstract Sentiment analysis or opinion mining (OM) concepts become familiar due to advances in networking technologies and social media. Recently, massive amount of text has been generated over Internet daily which makes the pattern recognition and decision making process difficult. Since OM find useful in business sectors to improve the quality of the product as well as services, machine learning (ML) and deep learning (DL) models can be considered into account. Besides, the hyperparameters involved in the DL models necessitate proper adjustment process to boost the classification process. Therefore, in this paper, a new Artificial Fish… More >

  • Open Access

    ARTICLE

    Optimal Deep Learning Enabled Communication System for Unmanned Aerial Vehicles

    Anwer Mustafa Hilal1,*, Jaber S. Alzahrani2, Dalia H. Elkamchouchi3, Majdy M. Eltahir4, Ahmed S. Almasoud5, Abdelwahed Motwakel1, Abu Sarwar Zamani1, Ishfaq Yaseen1

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 955-969, 2023, DOI:10.32604/csse.2023.030132 - 16 August 2022

    Abstract Recently, unmanned aerial vehicles (UAV) or drones are widely employed for several application areas such as surveillance, disaster management, etc. Since UAVs are limited to energy, efficient coordination between them becomes essential to optimally utilize the resources and effective communication among them and base station (BS). Therefore, clustering can be employed as an effective way of accomplishing smart communication systems among multiple UAVs. In this aspect, this paper presents a group teaching optimization algorithm with deep learning enabled smart communication system (GTOADL-SCS) technique for UAV networks. The proposed GTOADL-SCS model encompasses a two stage process… More >

  • Open Access

    ARTICLE

    Latent Space Representational Learning of Deep Features for Acute Lymphoblastic Leukemia Diagnosis

    Ghada Emam Atteia*

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 361-376, 2023, DOI:10.32604/csse.2023.029597 - 16 August 2022

    Abstract Acute Lymphoblastic Leukemia (ALL) is a fatal malignancy that is featured by the abnormal increase of immature lymphocytes in blood or bone marrow. Early prognosis of ALL is indispensable for the effectual remediation of this disease. Initial screening of ALL is conducted through manual examination of stained blood smear microscopic images, a process which is time-consuming and prone to errors. Therefore, many deep learning-based computer-aided diagnosis (CAD) systems have been established to automatically diagnose ALL. This paper proposes a novel hybrid deep learning system for ALL diagnosis in blood smear images. The introduced system integrates… More >

  • Open Access

    ARTICLE

    Masked Face Recognition Using MobileNet V2 with Transfer Learning

    Ratnesh Kumar Shukla1,*, Arvind Kumar Tiwari2

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 293-309, 2023, DOI:10.32604/csse.2023.027986 - 16 August 2022

    Abstract Corona virus (COVID-19) is once in a life time calamity that has resulted in thousands of deaths and security concerns. People are using face masks on a regular basis to protect themselves and to help reduce corona virus transmission. During the on-going coronavirus outbreak, one of the major priorities for researchers is to discover effective solution. As important parts of the face are obscured, face identification and verification becomes exceedingly difficult. The suggested method is a transfer learning using MobileNet V2 based technology that uses deep feature such as feature extraction and deep learning model,… More >

  • Open Access

    ARTICLE

    Hybrid Deep Learning-Improved BAT Optimization Algorithm for Soil Classification Using Hyperspectral Features

    S. Prasanna Bharathi1,2, S. Srinivasan1,*, G. Chamundeeswari1, B. Ramesh1

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 579-594, 2023, DOI:10.32604/csse.2023.027592 - 16 August 2022

    Abstract Now a days, Remote Sensing (RS) techniques are used for earth observation and for detection of soil types with high accuracy and better reliability. This technique provides perspective view of spatial resolution and aids in instantaneous measurement of soil’s minerals and its characteristics. There are a few challenges that is present in soil classification using image enhancement such as, locating and plotting soil boundaries, slopes, hazardous areas, drainage condition, land use, vegetation etc. There are some traditional approaches which involves few drawbacks such as, manual involvement which results in inaccuracy due to human interference, time… More >

Displaying 1181-1190 on page 119 of 1955. Per Page