Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (121)
  • Open Access

    ARTICLE

    Research on Electric Vehicle Charging Optimization Strategy Based on Improved Crossformer for Carbon Emission Factor Prediction

    Hongyu Wang1, Wenwu Cui1, Kai Cui1, Zixuan Meng2,*, Bin Li2, Wei Zhang1, Wenwen Li1

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.069576 - 27 December 2025

    Abstract To achieve low-carbon regulation of electric vehicle (EV) charging loads under the “dual carbon” goals, this paper proposes a coordinated scheduling strategy that integrates dynamic carbon factor prediction and multi-objective optimization. First, a dual-convolution enhanced improved Crossformer prediction model is constructed, which employs parallel 1 × 1 global and 3 × 3 local convolution modules (Integrated Convolution Block, ICB) for multi-scale feature extraction, combined with an Adaptive Spectral Block (ASB) to enhance time-series fluctuation modeling. Based on high-precision predictions, a carbon-electricity cost joint optimization model is further designed to balance economic, environmental, and grid-friendly objectives.… More > Graphic Abstract

    Research on Electric Vehicle Charging Optimization Strategy Based on Improved Crossformer for Carbon Emission Factor Prediction

  • Open Access

    REVIEW

    Green is the new gold: a systematic review of the environmental impact of urological procedures, telehealth, and conferences

    John Hordines1, Shirley Ge2, Dima Raskolnikov1, Alexander C. Small1, Kara L. Watts1,*

    Canadian Journal of Urology, Vol.32, No.6, pp. 551-560, 2025, DOI:10.32604/cju.2025.065988 - 30 December 2025

    Abstract Background: The healthcare industry contributes nearly 5% of worldwide carbon emissions. In an effort to mitigate this impact, urology practices can take steps to reduce their carbon footprints. We conducted a systematic review which aimed to summarise the current literature on the environmental impact of urologic-related care. Methods: A systematic literature review evaluating the impact of urologic procedures, telehealth and conferences/interviews was conducted on PubMed and Cochrane databases using a Boolean search strategy and the following search terms: urology, planetary health, environmental impact, carbon emissions, carbon footprint, and waste. Full-text articles published in English were… More >

  • Open Access

    ARTICLE

    Numerical Investigation of Wind Resistance in Inland River Low-Emission Ships

    Guang Chen1, Shiwang Dang1, Fanpeng Kong2, Lingchong Hu1, Zhiming Zhang1, Yi Guo3, Xue Pei1, Jichao Li1,4,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.11, pp. 2721-2740, 2025, DOI:10.32604/fdmp.2025.068889 - 01 December 2025

    Abstract To enhance the navigation efficiency of inland new-energy ships and reduce energy consumption and emissions, this study investigates wind load coefficients under 13 conditions, combining a wind speed of 2.0 m/s with wind direction angles ranging from 0° to 180° in 15° increments. Using Computational Fluid Dynamics (CFD) simulations, the wind load is decomposed into along-course (CX) and transverse (CY) components, and their variation with wind direction is systematically analyzed. Results show that CX is maximal under headwind (0°), decreases approximately following a cosine trend, and reaches its most negative value under tailwind (180°). CY peaks at More >

  • Open Access

    ARTICLE

    Decoupling and Driving Forces in Economic Growth, Energy Consumption, and Carbon Emissions: Evidence from China’s BTH Region

    Hao Yue1, Di Gao2, Jin Gao1, Chengmei Wei1, Jiali Duan3, Shaocheng Mei3,*

    Energy Engineering, Vol.122, No.12, pp. 5091-5109, 2025, DOI:10.32604/ee.2025.069140 - 27 November 2025

    Abstract Against the backdrop of regional coordinated development and China’s “dual carbon” strategic objectives, the Beijing-Tianjin-Hebei (BTH) region faces an urgent need to transition from its traditional economic growth model, which is heavily reliant on resource consumption. This study investigates the decoupling dynamics among economic growth, energy consumption, and carbon emissions in the BTH region, along with the underlying driving forces, aiming to provide valuable insights for achieving the “dual carbon” targets and fostering high-quality regional development. First, the Tapio decoupling model is employed to analyze the decoupling relationships between economic growth, energy consumption, and carbon… More >

  • Open Access

    ARTICLE

    Low-Carbon Economic Dispatch of Electric-Thermal-Hydrogen Integrated Energy System Based on Carbon Emission Flow Tracking and Step-Wise Carbon Price

    Yukun Yang*, Jun He, Wenfeng Chen, Zhi Li, Kun Chen

    Energy Engineering, Vol.122, No.11, pp. 4653-4678, 2025, DOI:10.32604/ee.2025.068199 - 27 October 2025

    Abstract To address the issues of unclear carbon responsibility attribution, insufficient renewable energy absorption, and simplistic carbon trading mechanisms in integrated energy systems, this paper proposes an electric-heat-hydrogen integrated energy system (EHH-IES) optimal scheduling model considering carbon emission stream (CES) and wind-solar accommodation. First, the CES theory is introduced to quantify the carbon emission intensity of each energy conversion device and transmission branch by defining carbon emission rate, branch carbon intensity, and node carbon potential, realizing accurate tracking of carbon flow in the process of multi-energy coupling. Second, a stepped carbon pricing mechanism is established to… More >

  • Open Access

    PROCEEDINGS

    Research on the Vertical Fracture Propagation Behavior of Deep Offshore Sandstone Reservoirs

    Weishuai Zhang, Fengjiao Wang, Yikun Liu*, Yilin Liu

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.010789

    Abstract The mechanism of vertical extension in high-volume hydraulic fracturing is of significant importance for the volumetric transformation of low-permeability reservoirs in deep offshore sandstone formations. The complexity of fracture propagation behavior is influenced by the characteristics of discontinuous thin layers in the vertical plane. However, the mechanisms and influencing factors of fracture extension in the vertical direction during high-volume hydraulic fracturing remain unclear. This study integrates true triaxial hydraulic fracturing experiments with acoustic emission (AE) monitoring, employing a nonlinear finite element method to establish a multi-thin interlayer fracturing model based on seepage-stress-damage coupling. It investigates… More >

  • Open Access

    ARTICLE

    National survey of radiotherapy and androgen deprivation therapy strategies with PSMA-PET/CT integration in intermediate-risk prostate cancer: TROD 09-007 study

    Aysenur Elmali1, Birhan Demirhan2, Caglayan Selenge Beduk Esen3, Ozan Cem Guler4, Pervin Hurmuz5, Cem Onal1,4,*

    Canadian Journal of Urology, Vol.32, No.4, pp. 243-254, 2025, DOI:10.32604/cju.2025.066700 - 29 August 2025

    Abstract Background: Intermediate-risk prostate cancer (IR-PC) represents a heterogeneous group requiring nuanced treatment approaches, and recent advancements in radiotherapy (RT), androgen deprivation therapy (ADT), and prostate-specific membrane antigen positron emission tomography (PSMA-PET/CT) imaging have prompted growing interest in personalized, risk-adapted management strategies. This study by the Turkish Society for Radiation Oncology aims to examine radiation oncologists’ practices in managing IR-PC, focusing on RT and imaging modalities to identify trends for personalized treatments. Methods: A cross-sectional survey was conducted among Turkish radiation oncologists treating at least 50 prostate cancer (PC) cases annually. The 22-item questionnaire covered IR-PC… More >

  • Open Access

    ARTICLE

    Bi-Level Collaborative Optimization of Electricity-Carbon Integrated Demand Response for Energy-Intensive Industries under Source-Load Interaction

    Huaihu Wang1, Wen Chen2, Jin Yang1, Rui Su1, Jiale Li3, Liao Yuan3, Zhaobin Du3,*, Yujie Meng3

    Energy Engineering, Vol.122, No.9, pp. 3867-3890, 2025, DOI:10.32604/ee.2025.068062 - 26 August 2025

    Abstract Traditional demand response (DR) programs for energy-intensive industries (EIIs) primarily rely on electricity price signals and often overlook carbon emission factors, limiting their effectiveness in supporting low-carbon transitions. To address this challenge, this paper proposes an electricity–carbon integrated DR strategy based on a bi-level collaborative optimization framework that coordinates the interaction between the grid and EIIs. At the upper level, the grid operator minimizes generation and curtailment costs by optimizing unit commitment while determining real-time electricity prices and dynamic carbon emission factors. At the lower level, EIIs respond to these dual signals by minimizing their… More >

  • Open Access

    ARTICLE

    Impact of Building Materials for the Facade on Energy Consumption and Carbon Emissions (Case Study of Residential Buildings in Tehran)

    Amir Sina Darabi*, Mehdi Ravanshadnia

    Energy Engineering, Vol.122, No.9, pp. 3753-3792, 2025, DOI:10.32604/ee.2025.065241 - 26 August 2025

    Abstract Although currently, a large part of the existing buildings is considered inefficient in terms of energy, the ability to save energy consumption up to 80% has been proven in residential and commercial buildings. Also, carbon dioxide is one of the most important greenhouse gases contributing to climate change and is responsible for 60% of global warming. The facade of the building, as the main intermediary between the interior and exterior spaces, plays a significant role in adjusting the weather conditions and providing thermal comfort to the residents. In this research, 715 different scenarios were defined… More >

  • Open Access

    ARTICLE

    Spatiotemporal Variability of Atmospheric Pollutants in Syria: A Multi-Year Assessment Using Sentinel-5P Data

    Almustafa Abd Elkader Ayek1, Bilel Zerouali2,*, Ankur Srivastava3, Mohannad Ali Loho4,5, Nadjem Bailek6,7, Celso Augusto Guimarães Santos8,9

    Revue Internationale de Géomatique, Vol.34, pp. 669-689, 2025, DOI:10.32604/rig.2025.067137 - 19 August 2025

    Abstract This study investigates the spatial and temporal dynamics of key air pollutants—nitrogen dioxide (NO2), carbon monoxide (CO), methane (CH4), formaldehyde (HCHO), and the ultraviolet aerosol index (UVAI)—over the period 2019–2024. Utilizing high-resolution remote sensing data from the Sentinel-5 Precursor satellite and its TROPOspheric Monitoring Instrument (TROPOMI) processed via Google Earth Engine (GEE), pollutant concentrations were analyzed, with spatial visualizations produced using ArcGIS Pro. The results reveal that urban and industrial hotspots—notably in Damascus, Aleppo, Homs, and Hama—exhibit elevated NO2 and CO levels, strongly correlated with population density, traffic, and industrial emissions. Temporal trends indicate significant pollutant fluctuations More > Graphic Abstract

    Spatiotemporal Variability of Atmospheric Pollutants in Syria: A Multi-Year Assessment Using Sentinel-5P Data

Displaying 1-10 on page 1 of 121. Per Page