Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (80)
  • Open Access

    ARTICLE

    NUMERICAL INVESTIGATIONS ON COMBUSTION AND EMISSION CHARACTERISTICS IN A DIRECT INJECTION DIESEL ENGINE AT ELEVATED FUEL TEMPERATURES

    Manimaran Renganathan, Thundil Karuppa Raj Rajagopal*

    Frontiers in Heat and Mass Transfer, Vol.4, No.1, pp. 1-11, 2013, DOI:10.5098/hmt.v4.1.3008

    Abstract In this work, fuel spray parameters are studied by varying the fuel temperature. To overcome the tedious experimental task, a 3-D Computational Fluid Dynamics methodology is adopted by injecting fuel at specified temperatures of 313 K, 353 K and 393 K. The validation is accomplished after the optimal spatial and temporal steps of discretization are found out. At a fuel temperature of 313 K, advancing the injection timing from 6 deg bTDC to 20 deg bTDC increases cylinder peak pressure from 79.8 bar to 90.9 bar. Relation between the emission characteristics and spray SMD and temperature is studied. More >

  • Open Access

    ARTICLE

    COMBUSTION EFFICIENCY INSIDE CATALYTIC HONEYCOMB MONOLITH CHANNEL OF NATURAL GAS BURNER START-UP AND LOW CARBON ENERGY OF CATALYTIC COMBUSTION

    Shihong Zhang*,Zhihua Wang

    Frontiers in Heat and Mass Transfer, Vol.4, No.2, pp. 1-6, 2013, DOI:10.5098/hmt.v4.2.3005

    Abstract This article discussed exhaust gas temperature and pollutant emissions characteristics of the combustion of rich natural gas-air mixtures in Pd metal based honeycomb monoliths burner during the period of start-up process. The burner needs to be ignited by gas phase combustion with the excessive air coefficient (a) at 1.3. The chemistry at work in the monoliths was then investigated using the stagnation point flow reactor or SPFR. The experimental results in catalytic monolith can be explained from SPFR. The exhaust gas temperature and pollutant emissions were measured by thermocouple K of diameter 0.5 and the analyser every 1 minute, respectively.… More >

  • Open Access

    ARTICLE

    OPTIMIZATION OF COMPRESSION RATIO OF JATROPHA OIL BLEND WITH DIESEL FUELLED ON VARIABLE COMPRESSION RATIO ENGINE

    Biswajit De*, Rajsekhar Panua

    Frontiers in Heat and Mass Transfer, Vol.5, pp. 1-4, 2014, DOI:10.5098/hmt.5.10

    Abstract As the world is facing crisis due to the dwindling resources of fossil fuels, rapid depletion of conventional energy is a matter of serious concern for the mankind. So there is a necessity to find alternate fuels. Vegetable oils, because of their agricultural origin, due to less carbon content compared to mineral diesel are producing less CO2 emissions to the atmosphere is used as an alternate fuel in substitute to diesel fuel. In the present study optimum compression ratio for VCR diesel engine fuelled with Jatropha oil blends with diesel (30%) has been determined at 203 bars injector opening pressure,… More >

  • Open Access

    ARTICLE

    COMPUTATIONAL STUDIES OF SWIRL RATIO AND INJECTION TIMING ON ATOMIZATION IN A DIRECT INJECTION DIESEL ENGINE

    Renganathan Manimarana, Rajagopal Thundil Karuppa Rajb,*

    Frontiers in Heat and Mass Transfer, Vol.5, pp. 1-9, 2014, DOI:10.5098/hmt.5.2

    Abstract Diesel engine combustion modeling presents a challenging task with the formation and breakup of spray into droplets. In this work, 3D-CFD computations are performed to understand the behaviour of spray droplet diameter and temperature during the combustion by varying the swirl ratio and injection timing. After the validation and grid and time independency tests, it is found that increase in swirl ratio from 1.4 to 4.1 results in peak pressure rise of 8 bar and an advancement of injection timing from 6 deg bTDC to 20 deg bTDC results in increase of peak pressure by 15 %. More >

  • Open Access

    ARTICLE

    Soil NOx Emission Prediction via Recurrent Neural Networks

    Zhaoan Wang1, Shaoping Xiao1,*, Cheryl Reuben2, Qiyu Wang2, Jun Wang2

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 285-297, 2023, DOI:10.32604/cmc.2023.044366

    Abstract This paper presents designing sequence-to-sequence recurrent neural network (RNN) architectures for a novel study to predict soil NOx emissions, driven by the imperative of understanding and mitigating environmental impact. The study utilizes data collected by the Environmental Protection Agency (EPA) to develop two distinct RNN predictive models: one built upon the long-short term memory (LSTM) and the other utilizing the gated recurrent unit (GRU). These models are fed with a combination of historical and anticipated air temperature, air moisture, and NOx emissions as inputs to forecast future NOx emissions. Both LSTM and GRU models can capture the intricate pulse patterns… More >

  • Open Access

    ARTICLE

    Effects of I-EGR and Pre-Injection on Performance of Gasoline Compression Ignition (GCI) at Low-Load Condition

    Binbin Yang1,*, Leilei Liu1, Yan Zhang1, Jingyu Gong1, Fan Zhang2, Tiezhu Zhang1

    Energy Engineering, Vol.120, No.10, pp. 2233-2250, 2023, DOI:10.32604/ee.2023.028898

    Abstract Gasoline compression ignition (GCI) has been considered as a promising combustion concept to yield ultra-low NOX and soot emissions while maintaining high thermal efficiency. However, how to improve the low-load performance becomes an urgent issue to be solved. In this paper, a GCI engine model was built to investigate the effects of internal EGR (i-EGR) and pre-injection on in-cylinder temperature, spatial concentration of mixture and OH radical, combustion and emission characteristics, and the control strategy for improving the combustion performance was further explored. The results showed an obvious expansion of the zone with an equivalence ratio between 0.8~1.2 is realized… More >

  • Open Access

    ARTICLE

    Inter-Provincial Transaction Model in Two-Level Electricity Market Considering Carbon Emission and Consumption Responsibility Weights

    Chunlei Jiao1, Hongyan Hao2, Ming Li1,*, Rifucairen Fu1, Yichun Liu3, Shunfu Lin3, Ronghui Liu3

    Energy Engineering, Vol.120, No.10, pp. 2393-2416, 2023, DOI:10.32604/ee.2023.028574

    Abstract In the context of the joint operation of China’s intra-provincial markets and inter-provincial trading, how to meet the load demand and energy consumption using inter-provincial renewable energy trading is a key problem. The combined operation of intra-provincial and inter-provincial markets provides a new way for provincial power companies to optimize and clear the intra-provincial power market, complete the intra-provincial consumption responsibility weight index, and consume renewable energy across provinces and regions. This paper combines power generation and consumption within the province, uses inter-provincial renewable energy trading to meet the load demand within the province and completes the index of intra-provincial… More >

  • Open Access

    ARTICLE

    COMBUSTION AND EMISSIONS CHARACTERISTICS OF METHANEAIR MIXTURES IN CATALYTIC MICRO-COMBUSTORS: A COMPUTATIONAL FLUID DYNAMICS STUDY

    Junjie Chen* , Baofang Liu, Longfei Yan, Deguang Xu

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-15, 2018, DOI:10.5098/hmt.11.2

    Abstract The combustion and emissions characteristics of methane-air mixtures in high-temperature catalytic micro-combustors were studied numerically. Both the heterogeneous and homogeneous chemistry were modeled simultaneously using detailed reaction mechanisms in order to better understand the role of each pathway in determining the product distributions. Computational fluid dynamics simulations were performed at a variety of pressures, temperatures, compositions, and combustor dimensions to determine their effects on the combustion and emissions characteristics. Comparisons were made between the results obtained for a purely heterogeneous case, a purely homogeneous case, and a coupled homogeneousheterogeneous case. It was shown that homogeneous and heterogeneous chemistry take place… More >

  • Open Access

    ARTICLE

    Étude sur les inquiétudes parentales et ses facteurs associés dans le cadre de la rémission d’un cancer pédiatrique

    M. Vander Haegen, A.-M. Etienne

    Psycho-Oncologie, Vol.16, No.4, pp. 343-350, 2022, DOI:10.3166/pson-2022-0218

    Abstract Introduction: Les études sur les inquiétudes et la détresse des parents d’un enfant en rémission de cancer sont moins développées dans la littérature. L’objectif de l’étude est d’examiner l’intensité des inquiétudes ainsi que ses associations avec le facteur d’intolérance à l’incertitude (II) et les symptômes anxiodépressifs.
    Méthodes: Soixante et un parents d’enfants en rémission de cancer (de quatre à six ans de rémission) ont participé à l’étude. Les parents ont rempli plusieurs questionnaires évaluant les inquiétudes, l’II et les symptômes anxiodépressifs.
    Résultats: Les parents présentent majoritairement des symptômes anxieux et des inquiétudes intenses relatives à l’évolution de la santé… More >

  • Open Access

    ARTICLE

    Parents d’un enfant atteint de cancer ou en rémission de cancer : une nécessité de les accompagner !

    M. Vander Haegen, C. Flahault, K. Lamore

    Psycho-Oncologie, Vol.16, No.4, pp. 339-341, 2022, DOI:10.3166/pson-2022-0215

    Abstract Lorsqu’un cancer touche un enfant, les parents (et la famille) se retrouvent impliqués à plusieurs niveaux dans la trajectoire de la maladie et des traitements. Cette trajectoire des soins est variable d’une famille à l’autre. Le monde psychomédical met depuis plusieurs années des actions sur le terrain pour accompagner les parents d’un enfant atteint de cancer ou en rémission de cancer. En tant que professionnels de santé, il nous faut poursuivre ces actions et développer un partenariat fort et harmonieux avec les parents, car ils sont les premiers relais pour le suivi médical de l’enfant. More >

Displaying 11-20 on page 2 of 80. Per Page