Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (74)
  • Open Access

    ARTICLE

    Identification of Type of a Fault in Distribution System Using Shallow Neural Network with Distributed Generation

    Saurabh Awasthi*, Gagan Singh, Nafees Ahamad

    Energy Engineering, Vol.120, No.4, pp. 811-829, 2023, DOI:10.32604/ee.2023.026863 - 13 February 2023

    Abstract A distributed generation system (DG) has several benefits over a traditional centralized power system. However, the protection area in the case of the distributed generator requires special attention as it encounters stability loss, failure re-closure, fluctuations in voltage, etc. And thereby, it demands immediate attention in identifying the location & type of a fault without delay especially when occurred in a small, distributed generation system, as it would adversely affect the overall system and its operation. In the past, several methods were proposed for classification and localisation of a fault in a distributed generation system.… More >

  • Open Access

    ARTICLE

    A Joint Optimization Algorithm for Renewable Energy System

    Imran Khan1, Firdaus Muhammad-Sukki2, Jorge Alfredo Ardila Rey3, Abdullahi Abubakar Mas’ud4, Saud Jazaa Alshammari4, Dag Øivind Madsen5,*

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 1979-1989, 2023, DOI:10.32604/iasc.2023.034106 - 05 January 2023

    Abstract Energy sustainability is a hot topic in both scientific and political circles. To date, two alternative approaches to this issue are being taken. Some people believe that increasing power consumption is necessary for countries’ economic and social progress, while others are more concerned with maintaining carbon consumption under set limitations. To establish a secure, sustainable, and economical energy system while mitigating the consequences of climate change, most governments are currently pushing renewable growth policies. Energy markets are meant to provide consumers with dependable electricity at the lowest possible cost. A profit-maximization optimal decision model is… More >

  • Open Access

    ARTICLE

    Modeling and Simulation of DVR and D-STATCOM in Presence of Wind Energy System

    Mehrdad Ahmadi Kamarposhti1,*, Ilhami Colak2, Phatiphat Thounthong3, Kei Eguchi4

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 4547-4570, 2023, DOI:10.32604/cmc.2023.034082 - 31 October 2022

    Abstract The present study suggests that series voltage injection is more effective than parallel current injection to improve voltage quality on the load side. The line voltage can be accurately symmetrized at the connection point by creating and controlling a series voltage component in each phase. This is more reliable and effective than parallel current injection. A dynamic voltage restorer (DVR) and a distribution static synchronous compensator (DSTATCOM) were utilized to provide the required power. The DVR is an effective and modern device utilized in parallel within the grid and can protect sensitive loads from voltage More >

  • Open Access

    ARTICLE

    Two-Stage Low-Carbon Economic Dispatch of Integrated Demand Response-Enabled Integrated Energy System with Ladder-Type Carbon Trading

    Song Zhang1, Wensheng Li2, Zhao Li2, Xiaolei Zhang1, Zhipeng Lu1, Xiaoning Ge3,*

    Energy Engineering, Vol.120, No.1, pp. 181-199, 2023, DOI:10.32604/ee.2022.022228 - 27 October 2022

    Abstract Driven by the goal of “carbon neutrality” and “emission peak”, effectively controlling system carbon emissions has become significantly important to governments around the world. To this end, a novel two-stage low-carbon economic scheduling framework that considers the coordinated optimization of ladder-type carbon trading and integrated demand response (IDR) is proposed in this paper for the integrated energy system (IES), where the first stage determines the energy consumption plan of users by leveraging the price-based electrical-heat IDR. In contrast, the second stage minimizes the system total cost to optimize the outputs of generations with consideration of More >

  • Open Access

    ARTICLE

    Hybrid Bacterial Foraging Optimization with Sparse Autoencoder for Energy Systems

    Helen Josephine V L1, Ramchand Vedaiyan2, V. M. Arul Xavier3, Joy Winston J4, A. Jegatheesan5, D. Lakshmi6, Joshua Samuel Raj7,*

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 701-714, 2023, DOI:10.32604/csse.2023.030611 - 16 August 2022

    Abstract The Internet of Things (IoT) technologies has gained significant interest in the design of smart grids (SGs). The increasing amount of distributed generations, maturity of existing grid infrastructures, and demand network transformation have received maximum attention. An essential energy storing model mostly the electrical energy stored methods are developing as the diagnoses for its procedure was becoming further compelling. The dynamic electrical energy stored model using Electric Vehicles (EVs) is comparatively standard because of its excellent electrical property and flexibility however the chance of damage to its battery was there in event of overcharging or… More >

  • Open Access

    ARTICLE

    Maximum Power Extraction Control Algorithm for Hybrid Renewable Energy System

    N. Kanagaraj*, Mohammed Al-Ansi

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 769-784, 2023, DOI:10.32604/csse.2023.029457 - 16 August 2022

    Abstract In this research, a modified fractional order proportional integral derivate (FOPID) control method is proposed for the photovoltaic (PV) and thermoelectric generator (TEG) combined hybrid renewable energy system. The faster tracking and steady-state output are aimed at the suggested maximum power point tracking (MPPT) control technique. The derivative order number (µ) value in the improved FOPID (also known as PIλDµ) control structure will be dynamically updated utilizing the value of change in PV array voltage output. During the transient, the value of µ is changeable; it’s one at the start and after reaching the maximum power… More >

  • Open Access

    ARTICLE

    Intelligent Smart Grid Stability Predictive Model for Cyber-Physical Energy Systems

    Ashit Kumar Dutta1,*, Manal Al Faraj1, Yasser Albagory2, Mohammad zeid M Alzamil1, Abdul Rahaman Wahab Sait3

    Computer Systems Science and Engineering, Vol.44, No.2, pp. 1219-1231, 2023, DOI:10.32604/csse.2023.026467 - 15 June 2022

    Abstract A cyber physical energy system (CPES) involves a combination of processing, network, and physical processes. The smart grid plays a vital role in the CPES model where information technology (IT) can be related to the physical system. At the same time, the machine learning (ML) models find useful for the smart grids integrated into the CPES for effective decision making. Also, the smart grids using ML and deep learning (DL) models are anticipated to lessen the requirement of placing many power plants for electricity utilization. In this aspect, this study designs optimal multi-head attention based… More >

  • Open Access

    ARTICLE

    Gaussian PI Controller Network Classifier for Grid-Connected Renewable Energy System

    Ravi Samikannu1,*, K. Vinoth2, Narasimha Rao Dasari3, Senthil Kumar Subburaj4

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 983-995, 2023, DOI:10.32604/iasc.2023.026069 - 06 June 2022

    Abstract Multi-port converters are considered as exceeding earlier period decade owing to function in a combination of different energy sources in a single processing unit. Renewable energy sources are playing a significant role in the modern energy system with rapid development. In renewable sources like fuel combustion and solar energy, the generated voltages change due to their environmental changes. To develop energy resources, electric power generation involved huge awareness. The power and output voltages are plays important role in our work but it not considered in the existing system. For considering the power and voltage, Gaussian… More >

  • Open Access

    ARTICLE

    Data Mining Based Integrated Electric-Gas Energy System Multi-Objective Optimization

    Zhukui Tan1,*, Yongjie Ren1, Hua Li1, Weili Ren2, Xichao Zhou2, Ming Zeng1

    Energy Engineering, Vol.119, No.6, pp. 2607-2619, 2022, DOI:10.32604/ee.2022.019550 - 14 September 2022

    Abstract With the proposal of carbon neutrality, how to improve the proportion of clean energy in energy consumption and reduce carbon dioxide emissions has become the important challenge for the traditional energy industry. Based on the idea of multi-energy complementarity, a typical integrated energy system consisting of electric system and gas system is constructed based on the application of power to gas (P2G) technology and gas turbine in this paper. Furthermore, a multi-objective optimization model with economic improvement, carbon emission reduction and peak-load shifting as objectives is proposed, and solved by BSO algorithm. Finally, a typical More >

  • Open Access

    ARTICLE

    Water Wave Optimization with Deep Learning Driven Smart Grid Stability Prediction

    Anwer Mustafa Hilal1,2,*, Aisha Hassan Abdalla Hashim1, Heba G. Mohamed3, Mohammad Alamgeer4,5, Mohamed K. Nour6, Anas Abdelrahman7, Abdelwahed Motwakel2

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 6019-6035, 2022, DOI:10.32604/cmc.2022.031425 - 28 July 2022

    Abstract Smart Grid (SG) technologies enable the acquisition of huge volumes of high dimension and multi-class data related to electric power grid operations through the integration of advanced metering infrastructures, control systems, and communication technologies. In SGs, user demand data is gathered and examined over the present supply criteria whereas the expenses are then informed to the clients so that they can decide about electricity consumption. Since the entire procedure is valued on the basis of time, it is essential to perform adaptive estimation of the SG’s stability. Recent advancements in Machine Learning (ML) and Deep… More >

Displaying 41-50 on page 5 of 74. Per Page