Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (42)
  • Open Access

    ARTICLE

    Optimal Operation Strategy of Electricity-Hydrogen Regional Energy System under Carbon-Electricity Market Trading

    Jingyu Li1,2, Mushui Wang1,2,*, Zhaoyuan Wu1,3, Guizhen Tian1,2, Na Zhang1,2, Guangchen Liu1,2

    Energy Engineering, Vol.121, No.3, pp. 619-641, 2024, DOI:10.32604/ee.2023.044862

    Abstract Given the “double carbon” objective and the drive toward low-carbon power, investigating the integration and interaction within the carbon-electricity market can enhance renewable energy utilization and facilitate energy conservation and emission reduction endeavors. However, further research is necessary to explore operational optimization methods for establishing a regional energy system using Power-to-Hydrogen (P2H) technology, focusing on participating in combined carbon-electricity market transactions. This study introduces an innovative Electro-Hydrogen Regional Energy System (EHRES) in this context. This system integrates renewable energy sources, a P2H system, cogeneration units, and energy storage devices. The core purpose of this integration is to optimize renewable energy… More > Graphic Abstract

    Optimal Operation Strategy of Electricity-Hydrogen Regional Energy System under Carbon-Electricity Market Trading

  • Open Access

    ARTICLE

    Two-Stage Optimal Scheduling of Community Integrated Energy System

    Ming Li1,*, Rifucairen Fu1, Tuerhong Yaxiaer1, Yunping Zheng1, Abiao Huang2, Ronghui Liu2, Shunfu Lin2

    Energy Engineering, Vol.121, No.2, pp. 405-424, 2024, DOI:10.32604/ee.2023.044509

    Abstract From the perspective of a community energy operator, a two-stage optimal scheduling model of a community integrated energy system is proposed by integrating information on controllable loads. The day-ahead scheduling analyzes whether various controllable loads participate in the optimization and investigates the impact of their responses on the operating economy of the community integrated energy system (IES) before and after; the intra-day scheduling proposes a two-stage rolling optimization model based on the day-ahead scheduling scheme, taking into account the fluctuation of wind turbine output and load within a short period of time and according to the different response rates of… More >

  • Open Access

    ARTICLE

    Low-Carbon Dispatch of an Integrated Energy System Considering Confidence Intervals for Renewable Energy Generation

    Yan Shi1, Wenjie Li1, Gongbo Fan2,*, Luxi Zhang1, Fengjiu Yang1

    Energy Engineering, Vol.121, No.2, pp. 461-482, 2024, DOI:10.32604/ee.2023.043835

    Abstract Addressing the insufficiency in down-regulation leeway within integrated energy systems stemming from the erratic and volatile nature of wind and solar renewable energy generation, this study focuses on formulating a coordinated strategy involving the carbon capture unit of the integrated energy system and the resources on the load storage side. A scheduling model is devised that takes into account the confidence interval associated with renewable energy generation, with the overarching goal of optimizing the system for low-carbon operation. To begin with, an in-depth analysis is conducted on the temporal energy-shifting attributes and the low-carbon modulation mechanisms exhibited by the source-side… More >

  • Open Access

    ARTICLE

    CT-NET: A Novel Convolutional Transformer-Based Network for Short-Term Solar Energy Forecasting Using Climatic Information

    Muhammad Munsif1,2, Fath U Min Ullah1,2, Samee Ullah Khan1,2, Noman Khan1,2, Sung Wook Baik1,2,*

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 1751-1773, 2023, DOI:10.32604/csse.2023.038514

    Abstract Photovoltaic (PV) systems are environmentally friendly, generate green energy, and receive support from policies and organizations. However, weather fluctuations make large-scale PV power integration and management challenging despite the economic benefits. Existing PV forecasting techniques (sequential and convolutional neural networks (CNN)) are sensitive to environmental conditions, reducing energy distribution system performance. To handle these issues, this article proposes an efficient, weather-resilient convolutional-transformer-based network (CT-NET) for accurate and efficient PV power forecasting. The network consists of three main modules. First, the acquired PV generation data are forwarded to the pre-processing module for data refinement. Next, to carry out data encoding, a… More >

  • Open Access

    REVIEW

    FOULING PHENOMENON AND ITS EFFECT ON HEAT EXCHANGER: A REVIEW

    Stephen K. Ogbonnaya, Oluseyi O. Ajayi*

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-12, 2017, DOI:10.5098/hmt.9.31

    Abstract Heat exchangers as a heat transfer device has gained wide applications across different levels of domestic and industrial set-ups. Various studies have been carried out to study, analyse and predict its performance. However, one major phenomenon that limits heat exchanger performance is attributed to fouling. Based on this, various studies and approaches have focused on reduction, elimination and mitigation of fouling. This study therefore focused on this. It reviewed several attempts that have been carried out to understand and mitigate the incidents of fouling in heat exchangers. The study found that despite the existing models developed towards understanding fouling, there… More >

  • Open Access

    ARTICLE

    Enhanced Perturb and Observe Control Algorithm for a Standalone Domestic Renewable Energy System

    N. Kanagaraj1,*, Obaid Aldosari1, M. Ramasamy2, M. Vijayakumar2

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 2291-2306, 2023, DOI:10.32604/iasc.2023.039101

    Abstract The generation of electricity, considering environmental and economic factors is one of the most important challenges of recent years. In this article, a thermoelectric generator (TEG) is proposed to use the thermal energy of an electric water heater (EWH) to generate electricity independently. To improve the energy conversion efficiency of the TEG, a fuzzy logic controller (FLC)-based perturb & observe (P&O) type maximum power point tracking (MPPT) control algorithm is used in this study. An EWH is one of the major electricity consuming household appliances which causes a higher electricity price for consumers. Also, a significant amount of thermal energy… More >

  • Open Access

    ARTICLE

    EXERGY ANALYSIS IN ENERGY SYSTEMS: FUNDAMENTALS AND APPLICATION

    Hamidreza Shabgarda,* , Amir Faghrib

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-16, 2019, DOI:10.5098/hmt.12.9

    Abstract Fundamentals of exergy analysis in energy systems are reviewed and presented in a cohesive and general manner for the study of energy systems. The exergy analysis is applied to several engineering systems and processes, namely fuel cells, latent heat thermal energy storage, heat exchangers and thermal desalination systems to obtain insight on the best optimization strategies as well as the theoretical limits of performance. The various sources of irreversibility and optimal operating conditions are presented for relevant applications. It is also shown that for some systems the exergy efficiency as a function of a given parameter may have opposite trend… More >

  • Open Access

    EDITORIAL

    Sustainable Development of Energy Systems and Climate Systems: Key Issues and Perspectives

    Bing Wang1,2,*, Lu Li1, Xinru Jiang1

    Energy Engineering, Vol.120, No.8, pp. 1763-1773, 2023, DOI:10.32604/ee.2023.027846

    Abstract Climate change and energy security issues are prominent challenges in current energy system management, which should be governed synergistically due to the feedback relationships between them. The “Energy Systems Management and Climate Change” Special Collection Issue in the journal of Energy Engineering provide insights into the field of energy systems management and climate change. From an extended perspective, this study discusses the key issues, research methods and models for energy system management and climate change research. Comprehensive and accurate prediction of energy supply and demand, the evaluation on the energy system resilience to climate change and the coupling methodology application… More > Graphic Abstract

    Sustainable Development of Energy Systems and Climate Systems: Key Issues and Perspectives

  • Open Access

    ARTICLE

    An Investigation of Battery Energy Storage Aided Wind-Coal Integrated Energy System

    Enhui Sun1,2, Jiahao Shi1,2, Lei Zhang1,2,*, Hongfu Ji1,2, Qian Zhang1,2, Yongyi Li1,2

    Energy Engineering, Vol.120, No.7, pp. 1583-1602, 2023, DOI:10.32604/ee.2023.027790

    Abstract This paper studies the feasibility of a supply-side wind-coal integrated energy system. Based on grid-side data, the load regulation model of coal-fired power and the wind-coal integrated energy system model are established. According to the simulation results, the reasons why the wind-coal combined power supply is difficult to meet the grid-side demand are revealed through scenario analysis. Based on the wind-coal combined operation, a wind-coal-storage integrated energy system was proposed by adding lithium-iron phosphate battery energy storage system (LIPBESS) to adjust the load of the system. According to the four load adjustment scenarios of grid-side instructions of the wind-coal system,… More >

  • Open Access

    ARTICLE

    Hybrid Energy Systems and the Logic of Their Service-Dominant Implementation: Screening the Pathway to Improve Results

    Halyna Bielokha1, Leonora Chupryna2, Sergey Denisyuk1, Tatiana Eutukhova3, Oleksandr Novoseltsev2,*

    Energy Engineering, Vol.120, No.6, pp. 1307-1323, 2023, DOI:10.32604/ee.2023.025863

    Abstract The transition of the global economy to a low-carbon development path has led to dramatic changes in the organization and functioning of energy markets around the world, where hybrid energy systems (HESs) are one of the decisive active agents. At the same time, a number of problems facing the modern HESs are primarily due to the stochastic nature of the renewable energy they use, require further profound changes not only in the technologies they use and how they manage them, necessary to meet the needs of end consumers and interact with the unified energy system, but also to preserve the… More >

Displaying 1-10 on page 1 of 42. Per Page