Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (17)
  • Open Access

    ARTICLE

    Value-Added Utilization of Agro-Waste Derived Oil Palm Ash in Epoxy Composites

    Samsul Rizal1, Fizree, H. M.2, Chaturbhuj K. Saurabh3, Deepu A. Gopakumar2, N. A. Sri Aprilia4, D. Hermawan5, A. Banerjee6, Fazita M. R. M2, Haafiz M. K. M.2, Abdul Khalil H. P. S.2,*

    Journal of Renewable Materials, Vol.7, No.12, pp. 1269-1278, 2019, DOI:10.32604/jrm.2019.07227

    Abstract Oil palm ash (OPA) is an agro-industry waste and it has disposable problems. In the present study, an effort was made for value addition to OPA by incorporating it as a micro-filler in different concentration (0, 10, 20, 30, 40, and 50%) and sizes (100, 200, and 300 mesh size particles) in the epoxy matrix. Prepared micro OPA was having a crystallinity index of 65.4%, high inorganic elements, and smooth surface morphology. Fabricated composites had higher void content as compared to neat epoxy matrix. Mechanical properties of fabricated composites had a maximum value at 30% loading of 300 mesh-size filler… More >

  • Open Access

    ABSTRACT

    Research on in situ observation of fracture process of fiber/epoxy composites

    Luobin Wang, Feng Xu*, Xiaofang Hu, Hongyan Qu, Hong Miao, Zhong Zhang

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.18, No.2, pp. 55-56, 2011, DOI:10.3970/icces.2011.018.055

    Abstract Recent studies have indicated that mechanical performance of the short fiber-reinforced polymers composites not only depends on matrix type, fiber type, fiber weight fraction, fiber orientation, fiber dispersion etc. but fiber-matrix interface and matrix morphology are also of paramount importance. Many scholars have studied on effects of matrix and interface modification on the mechanical behavior of short carbon fiber reinforced epoxy composite. However, there is little work focused on the in situ observation of fracture process of fiber/epoxy composites. And it is difficult to know about crack and crack propagation in the sample without direct observations of fiber-matrix interface when… More >

  • Open Access

    ABSTRACT

    Low-Velocity Impact Response of Braided Carbon/Epoxy Composites

    M.V.Hosur1, M. M. Islam, S. Jeelani

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.6, No.1, pp. 81-90, 2008, DOI:10.3970/icces.2008.006.081

    Abstract In this paper, low-velocity impact response of braided composites is presented. Three types of braided fabrics were used. They were:$\pm$45, 0/$\pm$45, and 0/$\pm$60. Laminates with 7 layers of$\pm$45 and 4 layers of 0/$\pm$45, and 0/$\pm$60 were fabricated by vacuum assisted resin infusion molding process to get an average thickness ranging from 2.25 to 2.4 mm. Samples of size 10$\times$ 10 cm were then cut from the panels and impacted at 10, 20 and 30 J. Impact parameters like peak load and absorbed energy were calculated and normalized for thickness. All the samples were then subjected to ultrasonic c-scan testing to… More >

  • Open Access

    ABSTRACT

    Impact Performance of Nanophased Woven Fabric Carbon/Epoxy Composite Laminates

    M.V. Hosur1, F.H. Chowdhury1, S. Jeelani1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.2, No.4, pp. 119-124, 2007, DOI:10.3970/icces.2007.002.119

    Abstract In the present study, Nanomer® I-28E, organically modified montmorillonite nanoclay supplied by Nanocor Inc., was used to modify SC-15, a toughened epoxy system using sonication route. Different weight percentage ranging from 1-3% of nanoclay was used. The modified epoxy was then used to fabricate 15-layer plain weave carbon/epoxy composite laminates using vacuum assisted resin transfer molding (VARTM) method. Samples of size 100 x 100 mm were cut from the laminates and were subjected to low-velocity impact loading using an instrumented drop-weight system (Dynatup Model 8210) at three different energy levels of 10, 20 and 30J. Transient response of the samples… More >

  • Open Access

    ARTICLE

    Numerical Modelling of the Transient Hygroscopic Behavior of Flax-Epoxy Composite

    Wajdi Zouari1,*, Mustapha Assarar1, Abderrazak Chilali2, Rezak Ayad1, Hocine Kebir3

    Journal of Renewable Materials, Vol.7, No.9, pp. 839-853, 2019, DOI:10.32604/jrm.2019.06773

    Abstract This contribution deals with the development of a three-node triangular plane finite element to analyze the transient hygroscopic behavior of 2/2 twill flax fabric-reinforced epoxy composite. Several plates of this material were fabricated using the vacuum infusion process and composite specimens were then cut and aged in tap water at room temperature until saturation. To simplify, a plane modelling of water diffusion in the aged specimens is adopted and Fick’s model is used to describe the water diffusion kinetics. To highlight the heterogeneity of the flax-epoxy samples, the twill flax fabrics waviness is modelled with a sinusoidal undulation. In particular,… More >

  • Open Access

    ARTICLE

    Preliminary Study on Tensile and Impact Properties of Kenaf/Bamboo Fiber Reinforced Epoxy Composites

    Ahmad Safwan1, Mohammad Jawaid1*, Mohamed T. H. Sultan1,2, Azman Hassan3

    Journal of Renewable Materials, Vol.6, No.5, pp. 529-535, 2018, DOI:10.7569/JRM.2018.634103

    Abstract The application of natural fibers as reinforcement in composite material has increased due to environmental concerns, low cost, degradability and health concerns. The purpose of this study is to identify the best type of bamboo fibers to be used as reinforcement for kenaf (K)/bamboo hybrid composite. There were three types of bamboo fibers evaluated in this study which include bamboo mat (B), bamboo fabric (BF) and bamboo powder (BP). Chemical composition of B, BF, BP and K fibers were analyzed in this study. The effect of different types of bamboo fibers on tensile, impact, and morphological properties were investigated. The… More >

  • Open Access

    ARTICLE

    Supercritical Carbon Dioxide Treated Kenaf Bast Pulp Fiber Reinforcement in Epoxy Composite

    N. A. Sri Aprilia1, M. S. Nurul Atiqah2, Zhari Ismail3, C. Y. Loo2, Chaturbhuj K. Saurabh2, Rudi Dungani4, Abdul Khalil H.P.S2*

    Journal of Renewable Materials, Vol.5, No.5, pp. 380-387, 2017, DOI:10.7569/JRM.2017.634130

    Abstract Due to environmental concerns, green composites have become a highly researched material. In the present study, kenaf fiber was used as reinforcement in epoxy-based composite with weight fraction ranges from 0, 5, 10, and 15% (w/w of resin). The ratio of epoxy to hardener was 65:32.5. Prior to incorporation, kenaf bast fiber underwent Soda-AQ pulping followed by total chlorine-free bleaching (OAZP sequence). The obtained pulp was then subjected to supercritical carbon dioxide extraction (SCE) treatment. It was observed that epoxy composite with 10% of fiber loading demonstrated the highest mechanical properties with a tensile strength of 64 MPa, tensile modulus… More >

Displaying 11-20 on page 2 of 17. Per Page