Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (37)
  • Open Access


    Condition Monitoring and Maintenance Management with Grid-Connected Renewable Energy Systems

    Md. Mottahir Alam1,*, Ahteshamul Haque2, Mohammed Ali Khan3, Nebras M. Sobahi1, Ibrahim Mustafa Mehedi1,4, Asif Irshad Khan5

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 3999-4017, 2022, DOI:10.32604/cmc.2022.026353

    Abstract The shift towards the renewable energy market for carbon-neutral power generation has encouraged different governments to come up with a plan of action. But with the endorsement of renewable energy for harsh environmental conditions like sand dust and snow, monitoring and maintenance are a few of the prime concerns. These problems were addressed widely in the literature, but most of the research has drawbacks due to long detection time, and high misclassification error. Hence to overcome these drawbacks, and to develop an accurate monitoring approach, this paper is motivated toward the understanding of primary failure concerning a grid-connected photovoltaic (PV)… More >

  • Open Access


    Smart Anti-Pinch Window Simulation Using H-/H Criterion and MOPSO

    Maedeh Mohammadi Azni1, Mohammad Ali Sadrnia1, Shahab S. Band2,*, Zulkefli Bin Mansor3

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 215-226, 2022, DOI:10.32604/cmc.2022.023030

    Abstract Automobile power windows are mechanisms that can be opened and shut with the press of a button. Although these windows can comfort the effort of occupancy to move the window, failure to recognize the person's body part at the right time will result in damage and in some cases, loss of that part. An anti-pinch mechanism is an excellent choice to solve this problem, which detects the obstacle in the glass path immediately and moves it down. In this paper, an optimal solution is presented for fault detection of the anti-pinch window system. The anti-pinch makes it possible to detect… More >

  • Open Access


    Conditional Probability Approach for Fault Detection in Photovoltaic Energy Farms

    Nagy I. Elkalashy1,*, Ibrahim B. M. Taha2

    Computer Systems Science and Engineering, Vol.42, No.3, pp. 1109-1120, 2022, DOI:10.32604/csse.2022.023509

    Abstract Detection of electric faults in photovoltaic (PV) farms enhances a sustainable service continuity of farm energy generation. In this paper, a probabilistic function is introduced to detect the faults in the PV farms. The conditional probability functions are adopted to detect different fault conditions such as internal string faults, string-to-string faults, and string-to-negative terminal faults. As the diodes are important to make the PV farms in-service safely during the faults, the distribution currents of these faults are evaluated with different concepts of diode consideration as well as without considering any diode installation. This part of the study enhances the diode… More >

  • Open Access


    An Efficient AES 32-Bit Architecture Resistant to Fault Attacks

    Hassen Mestiri1,2,3,*, Imen Barraj4,5, Abdullah Alsir Mohamed1, Mohsen Machhout3

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 3667-3683, 2022, DOI:10.32604/cmc.2022.020716

    Abstract The Advanced Encryption Standard cryptographic algorithm, named AES, is implemented in cryptographic circuits to ensure high security level to any system which required confidentiality and secure information exchange. One of the most effective physical attacks against the hardware implementation of AES is fault attacks which can extract secret data. Until now, a several AES fault detection schemes against fault injection attacks have been proposed. In this paper, so as to ensure a high level of security against fault injection attacks, a new efficient fault detection scheme based on the AES architecture modification has been proposed. For this reason, the AES… More >

  • Open Access


    Fault Detection Algorithms for Achieving Service Continuity in Photovoltaic Farms

    Sherif S. M. Ghoneim1,*, Amr E. Rashed2, Nagy I. Elkalashy1

    Intelligent Automation & Soft Computing, Vol.30, No.2, pp. 467-479, 2021, DOI:10.32604/iasc.2021.016681

    Abstract This study uses several artificial intelligence approaches to detect and estimate electrical faults in photovoltaic (PV) farms. The fault detection approaches of random forest, logistic regression, naive Bayes, AdaBoost, and CN2 rule induction were selected from a total of 12 techniques because they produced better decisions for fault detection. The proposed techniques were designed using distributed PV current measurements, plant current, plant voltage, and power. Temperature, radiation, and fault resistance were treated randomly. The proposed classification model was created using the Orange platform. A classification tree was visualized, consisting of seven nodes and four leaves, with a depth of four… More >

  • Open Access


    Automatic PV Grid Fault Detection System with IoT and LabVIEW as Data Logger

    Rohit Samkria1, Mohammed Abd-Elnaby2, Rajesh Singh3, Anita Gehlot3, Mamoon Rashid4,*, Moustafa H. Aly5, Walid El-Shafai6

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 1709-1723, 2021, DOI:10.32604/cmc.2021.018525

    Abstract Fault detection of the photovoltaic (PV) grid is necessary to detect serious output power reduction to avoid PV modules’ damage. To identify the fault of the PV arrays, there is a necessity to implement an automatic system. In this IoT and LabVIEW-based automatic fault detection of 3 × 3 solar array, a PV system is proposed to control and monitor Internet connectivity remotely. Hardware component to automatically reconfigure the solar PV array from the series-parallel (SP) to the complete cross-linked array underneath partial shading conditions (PSC) is centered on the Atmega328 system to achieve maximum power. In the LabVIEW environment,… More >

  • Open Access


    Stator Winding Fault Detection and Classification in Three-Phase Induction Motor

    Majid Hussain1,2, Dileep Kumar Soother1, Imtiaz Hussain Kalwar3, Tayab Din Memon4,5, Zubair Ahmed Memon6, Kashif Nisar7,*, Bhawani Shankar Chowdhry1

    Intelligent Automation & Soft Computing, Vol.29, No.3, pp. 869-883, 2021, DOI:10.32604/iasc.2021.017790

    Abstract Induction motors (IMs) are the workhorse of the industry and are subjected to a harsh environment. Due to their operating conditions, they are exposed to different kinds of unavoidable faults that lead to unscheduled downtimes and losses. These faults may be detected early through predictive maintenance (i.e., deployment of condition monitoring systems). Motor current signature analysis (MCSA) is the most widely used technique to detect various faults in industrial motors. The stator winding faults (SWF) are one of the major faults. In this paper, we present an induction motor fault detection and identification system using signal processing techniques such as… More >

  • Open Access


    Surge Fault Detection of Aeroengines Based on Fusion Neural Network

    Desheng Zheng1, Xiaolan Tang1,*, Xinlong Wu1, Kexin Zhang1, Chao Lu2, Lulu Tian3

    Intelligent Automation & Soft Computing, Vol.29, No.3, pp. 815-826, 2021, DOI:10.32604/iasc.2021.017737

    Abstract Aeroengine surge fault is one of the main causes of flight accidents. When a surge occurs, it is hard to detect it in time and take anti-surge measures correctly. Recently, people have been applying detection methods based on mathematical models and expert knowledge. Due to difficult modeling and limited failure-mode coverage of these methods, early surge detection cannot be achieved. To address these problems, firstly, this paper introduced the data of six main sensors related to the aeroengine surge fault, such as, total pressure at compressor (high pressure rotor) outlet (Pt3), high pressure compressor rotor speed (N2), power level angle… More >

  • Open Access


    GPS Vector Tracking Loop with Fault Detection and Exclusion

    Dah-Jing Jwo*, Meng-Hsien Hsieh

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 1785-1805, 2021, DOI:10.32604/cmc.2021.017225

    Abstract In this paper, both the integrity monitoring and fault detection and exclusion (FDE) mechanisms are incorporated into the vector tracking loop (VTL) architecture of the Global Positioning System (GPS) receiver for reliability enhancement. For the VTL, the tasks of signal tracking and navigation state estimation no longer process separately and a single extended Kalman filter (EKF) is employed to simultaneously track the received signals and estimate the receiver’s position, velocity, etc. In contrast to the scalar tracking loop (STL) which utilizes the independent parallel tracking loop approach, the VTL technique is beneficial from the correlation of each satellite signal and… More >

  • Open Access


    Role of Fuzzy Approach towards Fault Detection for Distributed Components

    Yaser Hafeez1, Sadia Ali1, Nz Jhanjhi2, Mamoona Humayun3, Anand Nayyar4,5,*, Mehedi Masud6

    CMC-Computers, Materials & Continua, Vol.67, No.2, pp. 1979-1996, 2021, DOI:10.32604/cmc.2021.014830

    Abstract Component-based software development is rapidly introducing numerous new paradigms and possibilities to deliver highly customized software in a distributed environment. Among other communication, teamwork, and coordination problems in global software development, the detection of faults is seen as the key challenge. Thus, there is a need to ensure the reliability of component-based applications requirements. Distributed device detection faults applied to tracked components from various sources and failed to keep track of all the large number of components from different locations. In this study, we propose an approach for fault detection from component-based systems requirements using the fuzzy logic approach and… More >

Displaying 21-30 on page 3 of 37. Per Page