Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (452)
  • Open Access

    ARTICLE

    Simulation of Corrosion-Induced Cracking of Reinforced Concrete Based on Fracture Phase Field Method

    Xiaozhou Xia1, Changsheng Qin1, Guangda Lu2, Xin Gu1,*, Qing Zhang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2257-2276, 2024, DOI:10.32604/cmes.2023.031238

    Abstract Accurate simulation of the cracking process caused by rust expansion of reinforced concrete (RC) structures plays an intuitive role in revealing the corrosion-induced failure mechanism. Considering the quasi-brittle fracture of concrete, the fracture phase field driven by the compressive-shear term is constructed and added to the traditional brittle fracture phase field model. The rationality of the proposed model is verified by a mixed fracture example under a shear displacement load. Then, the extended fracture phase model is applied to simulate the corrosion-induced cracking process of RC. The cracking patterns caused by non-uniform corrosion expansion are discussed for RC specimens with… More >

  • Open Access

    ARTICLE

    FUNDAMENTALS AND APPLICATIONS OF NEAR-FIELD RADIATIVE ENERGY TRANSFER

    Keunhan Parka,∗, Zhuomin Zhangb

    Frontiers in Heat and Mass Transfer, Vol.4, No.1, pp. 1-26, 2013, DOI:10.5098/hmt.v4.1.3001

    Abstract This article reviews the recent advances in near-field radiative energy transfer, particularly in its fundamentals and applications. When the geometrical features of radiating objects or their separating distances fall into the sub-wavelength range, near-field phenomena such as photon tunneling and surface polaritons begin to play a key role in energy transfer. The resulting heat transfer rate can greatly exceed the blackbody radiation limit by several orders magnitude. This astonishing feature cannot be conveyed by the conventional theory of thermal radiation, generating strong demands in fundamental research that can address thermal radiation in the near field. Important breakthroughs of near-field thermal… More >

  • Open Access

    ARTICLE

    EFFECT OF MAGNETIC FIELD ON INDIRECT NATURAL CONVECTION FLOW ABOVE A HORIZONTAL HOT FLAT PLATE

    Tapas Ray Mahapatraa, Sumanta Siduib, Samir Kumar Nandyc,*

    Frontiers in Heat and Mass Transfer, Vol.5, pp. 1-15, 2014, DOI:10.5098/hmt.5.15

    Abstract The effect of variable transverse magnetic field on steady two-dimensional indirect natural convection flow of an incompressible viscous fluid over a horizontal hot flat plate is theoretically studied. The governing partial differential equations are transformed into ordinary ones by similarity transformation and solved numerically using fourth order Runge-Kutta method with shooting technique. The results are obtained for the skin friction coefficient and the local Nusselt number as well as the dimensionless velocities, temperature for some values of the magnetic parameter (M) subject to either prescribed (constant or variable) surface temperature or prescribed (variable) heat flux. It is seen that the… More >

  • Open Access

    ARTICLE

    An Investigation into Forced Convection of a Nanofluid Flowing in a Rectangular Microchannel under the Influence of a Magnetic Field

    Muataz S. Alhassan1, Ameer A. Alameri2, Andrés Alexis Ramírez-Coronel3, I. B. Sapaev4,5,6, Azher M. Abed7,*, David-Juan Ramos-Huallpartupa8, Rahman S. Zabibah9

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.2, pp. 311-323, 2024, DOI:10.32604/fdmp.2023.026782

    Abstract In line with recent studies, where it has been shown that nanofluids containing graphene have a stronger capacity to boost the heat transfer coefficient with respect to ordinary nanofluids, experiments have been conducted using water with cobalt ferrite/graphene nanoparticles. In particular, a circular channel made of copper subjected to a constant heat flux has been considered. As nanoparticles are sensitive to the presence of a magnetic field, different conditions have been examined, allowing both the strength and the frequency of such a field to span relatively wide ranges and assuming different concentrations of nanoparticles. According to the findings, the addition… More >

  • Open Access

    EDITORIAL

    Computational Biomechanics and Machine Learning: Charting the Future of Molecular and Cellular Biomechanics Field

    Lining Arnold Ju*

    Molecular & Cellular Biomechanics, Vol.20, No.2, pp. 95-96, 2023, DOI:10.32604/mcb.2023.042338

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Phase-Field Simulation of δ Hydride Precipitation with Interfacial Anisotropy

    Hailong Nie1, Xincheng Shi1, Wenkui Yang1, Kaile Wang1, Yuhong Zhao2,1,3,*

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1425-1443, 2023, DOI:10.32604/cmc.2023.044510

    Abstract Previous studies of hydride in zirconium alloys have mainly assumed an isotropic interface. In practice, the difference in crystal structure at the interface between the matrix phase and the precipitate phase results in an anisotropic interface. With the purpose of probing the real evolution of hydrides, this paper couples an anisotropy function in the interfacial energy and interfacial mobility. The influence of anisotropic interfacial energy and interfacial mobility on the morphology of hydride precipitation was investigated using the phase-field method. The results show that the isotropy hydride precipitates a slate-like morphology, and the anisotropic hydride precipitates at the semi-coherent and… More >

  • Open Access

    ARTICLE

    Analysis of Profile and Unsteady Flow Performance of Variable Base Circle Radius Scroll Expander

    Junying Wei*, Gang Li, Chenrui Zhang, Wenwen Chang, Jidai Wang

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 199-214, 2023, DOI:10.32604/fhmt.2023.041793

    Abstract To study the complex internal flow field variation and output characteristics of a variable base radius scroll expander, this paper uses dynamic mesh techniques and computational fluid dynamics (CFD) methods to perform transient numerical simulations of a variable base radius scroll expander. Analysis of the flow field in the working cavity of a variable base radius scroll expander at different spindle angles and the effect of different profiles, speeds and pressures on the output characteristics of the scroll expander. The results of the study show that due to the periodic blocking of the inlet by the orbiting scroll, the fluid… More >

  • Open Access

    ARTICLE

    Numerical Examination of Free Convection Flow of Casson Ternary Hybrid Nanofluid across Magnetized Stretching Sheet Impacted by Newtonian Heating

    Mohammed Z. Swalmeh1,*, Firas A. Alwawi2, A. A. Altawallbeh3, Wejdan Mesa’adeen4, Feras M. Al Faqih4, Ahmad M. Awajan4

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 505-522, 2023, DOI:10.32604/fhmt.2023.044300

    Abstract In current study, the influence of magnetic field (MHD) on heat transfer of natural convection boundary layer flow in Casson ternary hybrid nanofluid past a stretching sheet is studied using numerical simulation. The Newtonian heating boundary conditions that depend on the temperature and velocity terms are taken into this investigation. The particular dimensional governing equations, for the studied problem, are converted to the system of partial differential equations utilizing adequate similarity transformation. Consequently, the system of equations is numerically solved using well-known Kellar box numerical techniques. The obtained numerical results are in excellent approval with previous literature results. The existence… More >

  • Open Access

    ARTICLE

    THERMAL DIFFUSION AND RADIATION EFFECTS ON UNSTEADY FREE CONVECTION FLOW IN THE PRESENCE OF MAGNETIC FIELD FIXED RELATIVE TO THE FLUID OR TO THE PLATE

    B. Rushi Kumar* , T. Sravan Kumar, A .G Vijaya Kumar

    Frontiers in Heat and Mass Transfer, Vol.6, pp. 1-9, 2015, DOI:10.5098/hmt.6.12

    Abstract The objective of this study is to investigated thermal diffusion and radiation effects on unsteady free convection chemically reacting fluid flow past an accelerated infinite inclined plate with variable temperature and mass diffusion under the influence of uniform transverse magnetic field when the magnetic lines of force are fixed relative to the fluid or to the plate studied in two cases, (i) when magnetic field fixed relative to the fluid (K=0), (ii) and the magnetic field fixed relative to the plate (K=1) have been considered. A general exact solution of the dimensionless governing partial differential equation is obtained by the… More >

  • Open Access

    ARTICLE

    DUAL SOLUTIONS FOR HEAT AND MASS TRANSFER IN MHD JEFFREY FLUID IN THE PRESENCE OF HOMOGENEOUSHETEROGENEOUS REACTIONS

    C. S. K. Rajua , N. Sandeepa, J. Prakashb,1

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-8, 2016, DOI:10.5098/hmt.7.14

    Abstract In this study, we analyzed the effects of nonlinear thermal radiation and induced magnetic field on steady two-dimensional incompressible flow of Jeffrey fluid flow past a stretching/shrinking surface in the presence of homogeneous-heterogeneous reactions. For physical relevance in this study we analyzed the behavior of homogeneous and heterogeneous profiles individually. The transformed governing equations with the help of similarity variables are solved numerically via Runge-Kutta and Newton’s method. We obtained better accuracy of the present results by differentiating with the existed published literature. The effect of pertinent parameters on velocity, induced magnetic field, temperature and concentration profiles along with the… More >

Displaying 21-30 on page 3 of 452. Per Page