Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (713)
  • Open Access

    ARTICLE

    Effect of Nitriding Treatment on Fatigue life for Free Piston Linear Engine Component using Frequency Response Method: a Finite Element Approach

    M. M. Rahman1, A. K. Ariffin2, S. Abdullah2, A. B. Rosli1

    Structural Durability & Health Monitoring, Vol.3, No.4, pp. 197-210, 2007, DOI:10.3970/sdhm.2007.003.197

    Abstract Low weight and long lifetime are necessary requirements for automobiles to significantly reduce CO2 emission and environmental burdens in their use. Aluminum alloys are one of the most promising materials selections for automobiles parts and electrical components to reduce their weight and to increase their specific strength. This paper presents the role of nitriding on the fatigue life of the vibrating cylinder block for a new two-stroke free piston engine using variable amplitude loading conditions. The finite element modeling and analysis have been performed utilising a computer aided design and a finite element analysis codes respectively.… More >

  • Open Access

    ARTICLE

    Integrity of Thermal Actuators using the Concept of Energy Density

    C.P. Providakis1

    Structural Durability & Health Monitoring, Vol.3, No.1, pp. 29-34, 2007, DOI:10.3970/sdhm.2007.003.029

    Abstract Actuators are structures that give micro-electro-mechanical systems (MEMS) the ability to interact with their environment rather than just passively sensing it. Recent studies of MEMS thermal micro-actuators have shown that simple in design and production devices can provide deflection of the order of 10 μm at low voltages. Recently, metals and single-crystal silicon materials were included in the range of materials used for thermal actuators since they operate at lower temperatures than the commonly used (poly)silicon devices. These actuators are liable to meet the loads in service, so the corresponding integrity and stability analysis constitutes a… More >

  • Open Access

    ARTICLE

    Finite Element Based Durability Assessment of a Free Piston Linear Engine Component

    M. M. Rahman1, A. K. Ariffin1, S. Abdullah1, N. Jamaludin1

    Structural Durability & Health Monitoring, Vol.3, No.1, pp. 1-14, 2007, DOI:10.3970/sdhm.2007.003.001

    Abstract A modern computational approach based on finite element analysis for durability assessment in a two-stroke free piston linear engine component using the variable amplitude loadings is presented. This paper describes the finite element analysis techniques to predict the fatigue life and identify the critical locations of the component. The effect of mean stress on the fatigue life is also investigated. The finite element modeling and analysis has been performed using a computer-aided design and a finite element analysis software package, and the fatigue life prediction was carried out using finite element based fatigue life prediction… More >

  • Open Access

    ABSTRACT

    HYBRID a powerful Boundary Element-Finite Element Method(BEM/FEM) software for analysis of seismic response of multiphase porous media

    B. Gatmiri1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.4, No.3, pp. 159-166, 2007, DOI:10.3970/icces.2007.004.159

    Abstract This document summarizes the basic concepts and steps of establishment of the set of equations of wave propoagation in far field and of the dynamic behaviour of porous media in the near field. A breif description of HYBRID software as a powerful tool for evaluation of local seismic site effect is presented. The Combination of the FEM and BEM and improvement of numerical algorithm for the time truncation are described. More >

  • Open Access

    ABSTRACT

    PDSL and SDSL Parallel Visualization Algorithms for Large-scale Finite Element Analysis Data in Distributed Parallel Computing Environment

    Jin Yeon Cho1, Yun Hyuk Choi2, You Me Song3, Chang Sik Kim4

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.4, No.3, pp. 151-158, 2007, DOI:10.3970/icces.2007.004.151

    Abstract In this work, PDSL(pre-detection sort last) and SDSL(strip-wise decomposition sort last) parallel visualization algorithms are proposed for efficient visualization of massive data generated from large-scale parallel finite element analysis through investigating the characteristics of distributed parallel finite element analysis procedure. The proposed parallel visualization algorithms are based on the sort last approach, and designed to be highly compatible with the characteristics of domain-wise computation in parallel finite element analysis. To investigate the performances of proposed algorithms, in-house software is developed by applying the binary tree network communication pattern along with the proposed sorting algorithms, and More >

  • Open Access

    ABSTRACT

    A four-node hybrid assumed-strain finite element for laminated composite plates

    A. Cazzani1, E. Garusi2, A. Tralli3, S.N. Atluri4

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.4, No.2, pp. 93-122, 2007, DOI:10.3970/icces.2007.004.093

    Abstract Fibre-reinforced plates and shells are finding an increasing interest in engineering applications. Consequently, efficient and robust computational tools are required for the analysis of such structural models. As a matter of fact, a large amount of laminate finite elements have been developed and incorporated in most commercial codes for structural analysis. In this paper a new laminate hybrid assumed-strain plate element is derived within the framework of the First-order Shear Deformation Theory (i.e. assuming that particles of the plate originally lying along a straight line which is normal to the undeformed middle surface remain aligned… More >

  • Open Access

    ABSTRACT

    Incompressible Viscous Flow Simulations Using the Petrov-Galerkin Finite Element Method

    Kazuhiko Kakuda1, Tomohiro Aiso1, Shinichiro Miura2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.4, No.1, pp. 11-18, 2007, DOI:10.3970/icces.2007.004.011

    Abstract The applications of a finite element scheme to three-dimensional incompressible viscous fluid flows are presented. The scheme is based on the Petrov-Galerkin weak formulation with exponential weighting functions. The incompressible Navier-Stokes equations are numerically integrated in time by using a fractional step strategy with second-order accurate Adams-Bashforth scheme for both advection and diffusion terms. Numerical solutions for flow around a circular cylinder and flow around a railway vehicle in a tunnel are presented. More >

  • Open Access

    ABSTRACT

    Review of existing numerical methods and validation procedure available for bird strike modelling

    M-A Lavoie1, A. Gakwaya1, M. Nejad Ensan2, D.G. Zimcik2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.2, No.4, pp. 111-118, 2007, DOI:10.3970/icces.2007.002.111

    Abstract This paper reviews numerical methods that are currently available to simulate bird strike as well as the theory of the event. It also summarizes important parameters and provides guidelines as to how to set up the analysis and how to evaluate a model. The information provided is based on physical properties and available results regarding a bird and its behaviour upon impact. The simulations have been performed with LS-DYNA 970 but can be done in similar dynamic finite elements analysis codes. More >

  • Open Access

    ABSTRACT

    Optimal 4-node shell and 3d-shell finite elements for nonlinear analysis

    B. Brank1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.2, No.3, pp. 81-86, 2007, DOI:10.3970/icces.2007.002.081

    Abstract First we shortly present several low-order (4-node) shell finite element formulations (based on Reissner-Mindlin kinematics) that allow for accurate and efficient (with coarse and distorted meshes) analysis of shell-like structures subjected to large deformations and rotations. The formulations are based on mixed variational principle, enhanced assumed strain (EAS) method (based on Green-Lagrange strains) and assumed natural strain (ANS) method. The EAS method is used in all formulations in order to improve both membrane and bending behavior of the 4-node element (the formulations differ from one another by the number of assumed EAS parameters), and the… More >

  • Open Access

    ABSTRACT

    Coupling of Natural Boundary Element Method and Finite Element Method for Three-dimensional Nonlinear Interface Problem

    Hong-ying Huang2,1, De-hao Yu 2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.2, No.3, pp. 67-74, 2007, DOI:10.3970/icces.2007.002.067

    Abstract In this paper, we apply the coupling of natural boundary element method and finite element method to solve a three-dimensional nonlinear interface problem. Two equations are coupled by interface conditions on the interface boundary. A spherical surface as the artificial boundary is introduced. The equivalent coupled variational problem is described. The existence and uniqueness of the solution of concerned problem as well as the estimates of its approximate solution are obtained. Some numerical examples are presented to demonstrate the effectiveness of this method. More >

Displaying 591-600 on page 60 of 713. Per Page