Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (630)
  • Open Access

    ARTICLE

    The Molecular Dynamic Finite Element Method (MDFEM)

    Lutz Nasdala1 , Andreas Kempe1 and Raimund Rolfes1

    CMC-Computers, Materials & Continua, Vol.19, No.1, pp. 57-104, 2010, DOI:10.3970/cmc.2010.019.057

    Abstract In order to understand the underlying mechanisms of inelastic material behavior and nonlinear surface interactions, which can be observed on macroscale as damping, softening, fracture, delamination, frictional contact etc., it is necessary to examine the molecular scale. Force fields can be applied to simulate the rearrangement of chemical and physical bonds. However, a simulation of the atomic interactions is very costly so that classical molecular dynamics (MD) is restricted to structures containing a low number of atoms such as carbon nanotubes. The objective of this paper is to show how MD simulations can be integrated into the finite element method… More >

  • Open Access

    ARTICLE

    Numerical Study of PVB Laminated Windshield Cracking Upon Human Head Impact

    Jun Xu1,2, Yibing Li1, Xi Chen2,3, Yuan Yan2,3, Dongyun Ge4,1, Bohan Liu1

    CMC-Computers, Materials & Continua, Vol.18, No.2, pp. 183-212, 2010, DOI:10.3970/cmc.2010.018.183

    Abstract The crack pattern in a PVB laminated windshield upon head impact is of considerable interest because it contains important information on energy mitigation, pedestrian protection, and accident reconstruction. We carry out a systematic numerical study based on the extended finite element method (XFEM), to investigate the effects of various material and system variables, including the impact speed, effective head mass, PVB interlayer material thickness and property, windshield curvature, aspect ratio and size, boundary constraint, impact angle and off-center impact, on the parameters characterizing the resulting crack pattern, i.e. the crack length, crack angle and circumferential crack shape. General relations bridging… More >

  • Open Access

    ARTICLE

    Theoretical Study on the Bilayer Buckling Technique for Thin Film Metrology

    Fei Jia1, Xiu-Peng Zheng1,2, Yan-Ping Cao1,3, Xi-Qiao Feng1

    CMC-Computers, Materials & Continua, Vol.18, No.2, pp. 105-120, 2010, DOI:10.3970/cmc.2010.018.105

    Abstract Recently, a novel technique based on the wrinkling of a bilayer composite film resting on a compliant substrate was proposed to measure the elastic moduli of thin films. In this paper, this technique is studied via theoretical analysis and finite element simulations. We find that under an applied compressive strain, the composite system may exhibit various buckling modes, depending upon the applied compressive strain, geometric and material parameters of the system. The physical mechanisms underlying the occurrence of the two most typical buckling modes are analyzed from the viewpoint of energy. When the intermediate layer is much thicker than the… More >

  • Open Access

    ARTICLE

    In-plane Crushing Analysis of Cellular Materials Using Vector Form Intrinsic Finite Element

    T.Y. Wu1, W.C. Tsai2, J.J. Lee2

    CMC-Computers, Materials & Continua, Vol.17, No.3, pp. 175-214, 2010, DOI:10.3970/cmc.2010.017.175

    Abstract The crushing of cellular materials is a highly nonlinear problem, for which geometrical, material, and contact/impact must be treated in one analysis. In order to develop a framework able to solve it efficiently and accurately, in this paper procedures for in-plane crushing analysis of cellular materials using vector form intrinsic finite element (VFIFE) is performed. A beam element of VFIFE is employed to handle large rotation and large deflection in the cell walls. An elastic-plastic material model with mixed hardening rule is adopted to account for material nonlinearity. In addition, an efficient contact/impact algorithm is designed to treat the complex… More >

  • Open Access

    ARTICLE

    Effects of TGO Roughness on Indentation Response of Thermal Barrier Coatings

    Taotao Hu1, gping Shen1,2

    CMC-Computers, Materials & Continua, Vol.17, No.1, pp. 41-58, 2010, DOI:10.3970/cmc.2010.017.041

    Abstract In this paper, an axisymmetric indentation model is set up to calculate the effects of the roughness of the thermally grown oxide (TGO) layer, which was modeled as a sinusoidal wave, on the indentation response of the thermal barrier coatings. It is found that the amplitude, wavelength, and thickness of the thermally grown oxide layer have obvious influences on the indentation response, while the effect of the indenter position can be neglected. In the top coating layer, residual stress mainly occurs below the indenter and around the nearest two peaks of the thermally grown oxide layer to the indenter. Only… More >

  • Open Access

    ARTICLE

    Numerical and Experimental Analysis of Welding Deformation in Thin Plates

    M.R. Khoshravan1 and M.A. Setoodeh1

    CMC-Computers, Materials & Continua, Vol.16, No.3, pp. 195-228, 2010, DOI:10.3970/cmc.2010.016.195

    Abstract The use of welding to permanently join plates is common in industry due to its high efficiency. But welding creates thermal stresses, which can lead to residual stresses and physical distortion. This phenomenon directly influences the buckling stiffness of the welded structure. The welding distortion not only makes difficult the erection of the project, but also influences the final quality and cost of production. In this research, the thermo-elastic-plastic conditions were simulated by a three-dimensional (3D) finite element model (FE). Mechanical and thermal properties of the material were applied to the model, leading to eigenvalue analysis of the thermal and… More >

  • Open Access

    ARTICLE

    Studies of Texture Gradients in the Localized Necking Band of AA5754 by EBSD and Microstructure-Based Finite Element Modeling

    Xiaohua Hu1, Gordana A. Cingara1, David S. Wilkinson1, Mukesh Jain2, PeidongWu2, Raja K. Mishra3

    CMC-Computers, Materials & Continua, Vol.14, No.2, pp. 99-124, 2009, DOI:10.3970/cmc.2009.014.099

    Abstract This work aims to understand the texture distribution in the localized necking band formed during uni-axial tension of AA5754 using an edge-constrained, plane strain post-necking FE model. The model domain is a long cross section of the band. Initial grain structure is mapped into the mesh from EBSD data using a modified Voroni-cell interpolation and considering pre-straining prior to localized necking. The material points in grains are assumed to exhibit isotropic elastoplastic behavior but have a relative strength in terms of Taylor factors which are updated by a Taylor-Bishop-Hill model. The predicted textures and gradients within the localized necking band… More >

  • Open Access

    ARTICLE

    Finite Element Simulations of Four-holes Indirect Extrusion Processes of Seamless Tube

    Dyi-Cheng1, Syuan-Yi Syong1

    CMC-Computers, Materials & Continua, Vol.13, No.3, pp. 191-200, 2009, DOI:10.3970/cmc.2009.013.191

    Abstract Finite element simulations are performed to investigate the plastic deformation behavior of Ti-6Al-4V titanium alloy during its indirect extrusion through a four-hole die. The simulations assume the die, mandrel and container to be rigid bodies and ignore the temperature change induced during the extrusion process. Under various extrusion conditions, the present numerical analysis investigates the effective stress and profile of product at the exit. The relative influences of the friction factors, the temperature of billet and the eccentricity of four-hole displacement are systematically examined. The simulations focus specifically on the effects of the friction factor, billet temperature and eccentricity ratio… More >

  • Open Access

    ARTICLE

    A Computational Approach to Investigate Electromagnetic Shielding Effectiveness of Steel Fiber-Reinforced Mortar

    S.H. Kwon1, H.K. Lee2

    CMC-Computers, Materials & Continua, Vol.12, No.3, pp. 197-222, 2009, DOI:10.3970/cmc.2009.012.197

    Abstract The electromagnetic shielding effectiveness of steel fiber-reinforced mortar was numerically examined in this study. A series of numerical analysis on twenty-seven types of specimens of different diameters, lengths, and volume fractions of fibers were conducted using the FE program HFSS to investigate the effect of the dimensions of steel fibers and the amount of fibers added to the mortar on the shielding effectiveness. S-parameters of some specimens were experimentally measured by the free space method and the experimentally measured S-parameters were compared with those computed in order to verify the present numerical analysis method. It was found that smaller diameters… More >

  • Open Access

    ARTICLE

    Bond-Slip Effects on the Behaviour of RC Beam under Monotonic Loading - An Integrated 3D Computational Model using EAS Approach

    Amiya K. Samanta1, Somnath Ghosh2

    CMC-Computers, Materials & Continua, Vol.12, No.1, pp. 1-38, 2009, DOI:10.3970/cmc.2009.012.001

    Abstract This paper presents a formulation of hypo-elasticity based RC beam model with bond-slip. Details of the constitutive model and analysis method used are provided. A procedure has been described to carry out three-dimensional analysis considering both geometrical as well as material nonlinearity for a simply supported RC beam employing finite element technique, which uses 8-noded isoparametric hexahedral element HCiS18. Enhanced assumed strain (EAS) formulation has been utilized to predict load-deformation and internal stresses both in the elastic as well as nonlinear regime. It models the composite behaviour of concrete and reinforcements in rigid /perfect bond situation and their mutual interaction… More >

Displaying 611-620 on page 62 of 630. Per Page