Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (27)
  • Open Access

    ARTICLE

    DIRECT SIMULATIONS OF BIPHILIC-SURFACE CONDENSATION: OPTIMIZED SIZE EFFECTS

    Zijie Chena , Sanat Modaka, Massoud Kavianya,* , Richard Bonnerb

    Frontiers in Heat and Mass Transfer, Vol.14, No.1, pp. 1-11, 2020, DOI:10.5098/hmt.14.1

    Abstract In dropwise condensation on vertical surface, droplets grow at nucleation sites, coalesce and reach the departing diameter. In biphilic surfaces, when the hydrophobic domain is small, the maximum droplet diameter is controlled by the shortest dimension where the droplets merge at the boundary. Through direct numerical simulations this size-effect heat transfer coefficient enhancement is calculated. Then the 1-D biphilic surface is optimized considering the size-dependent hydrophilic domain partial flooding (directly simulated as a liquid rivulet and using the capillary limit), the subcooling (heat flux) and condenser length effects. The predicted performance is in good agreement with the available experiments. More >

  • Open Access

    ARTICLE

    Interaction of Foam and Microemulsion Components in Low-Tension-Gas Flooding

    Jing Zhao, Jun Yang*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.7, pp. 1951-1961, 2023, DOI:10.32604/fdmp.2023.026115

    Abstract Low-Tension-Foam (LTF) flooding is an emerging enhanced oil recovery technique for low-permeability carbonate reservoirs. Foam capacity is closely related to the salinity environment (or, equivalently, the phase behavior of the oil/water/surfactant system). Therefore, the interactions between microemulsion and foam components are of primary importance in the LTF process. In this study, the phase behavior of an oil/water/surfactant system under equilibrium is analyzed, firstly by assuming perfect mixing. Meanwhile, the formation kinetics of microemulsion are monitored through a novel low-field NMR technique, which is able to provide quantitative assessment on the microemulsion evolution characteristics. Then, foam stability is examined in the… More >

  • Open Access

    ARTICLE

    Research on the Corrosion of J55 Steel Due to Oxygen-Reducing Air Flooding in Low-Permeability Reservoirs

    Liang Wang1, Baofeng Hou1, Yanming Fang3, Jintao Zhang2, Fajian Nie1,2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.7, pp. 1925-1937, 2023, DOI:10.32604/fdmp.2023.025966

    Abstract Oxygen-reducing air flooding is a low-permeability reservoir recovery technology with safety and low-cost advantages. However, in the process of air injection and drive, carbon in the air is oxidized through the crude oil reservoir to generate CO2, and this can cause serious corrosion in the recovery well. In this study, experiments on the corrosion of J55 tubular steel in a fluid environment with coexisting O2 and CO2 in an autoclave are presented. In particular, a weight loss method and a 3D morphometer were used to determine the average and the local corrosion rate. The corrosion surface morphology and composition were… More >

  • Open Access

    ARTICLE

    Pilot Test for Nitrogen Foam Flooding in Low Permeability Reservoir

    Xinyu Zhou1,2, Jia Huang1,2, Yuchen Qian1,2, Wenli Luo1,2, Lisha Qi3, Jie Wang3, Zhibin Jiang3, Hao Kang4,*

    Energy Engineering, Vol.120, No.3, pp. 763-774, 2023, DOI:10.32604/ee.2023.025893

    Abstract

    Due to the characteristics of reservoir formation, the producing level of low permeability reservoir is relatively very low. It is hard to obtain high recovery through conventional development schemes. Considering the tight matrix, complex fracture system, low production level of producers, and low recovery factor of M block in Xinjiang oilfield, it is selected for on-site pilot test of nitrogen foam flooding. Detailed flooding scheme is made and the test results are evaluated respectively both for producers and injectors. The pressure index, filling degree, and fluid injection profile are found to be all improved in injectors after injection of nitrogen… More >

  • Open Access

    ARTICLE

    Do Geographically Isolated Grasslands Follow the Principle of Island Biogeography in a Landscape Scale? Taking Poyang Lake Grassland as an Example

    Shiqi Luo1,3, Wenbo Chen2,3,*, Lei He4, Qiongbing Xiong1,3

    Phyton-International Journal of Experimental Botany, Vol.92, No.2, pp. 455-470, 2023, DOI:10.32604/phyton.2022.022466

    Abstract As one of the basic theories of biodiversity conservation, island biogeography has been widely accepted in the past decades. Originally, island biogeography was put forward and applied in oceanic environments. But later on, it was found out that the application was not only limited to oceanic islands, but also in terrestrial environments with relatively isolated conditions. In terms of biodiversity level, island biogeography generally focuses on a small scale, such as species diversity and genetic diversity. The studies of biodiversity on a large-scale based on island biogeography, such as ecosystem and landscape scales, were seldomly conducted. Taking Poyang Lake, the… More >

  • Open Access

    ARTICLE

    An Integrated Oil Production Enhancement Technology Based on Waterflooding Energy Recovery

    Aleksandr Lekomtsev1,*, Vitaliy Bakaneev1, Ivan Stepanenko1, Petr Maximov1, Yulia Rozhkova1, Alexey Dengaev2, Wanli Kang3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.2, pp. 285-301, 2023, DOI:10.32604/fdmp.2022.019809

    Abstract A new integrated oil production enhancement technology based on water-flooding energy recovery is proposed. After providing an extensive review of the existing scientific and technical literature on this subject, the proposed integrated technology is described together with the related process flow diagram, the criteria used to select a target facility for its implementation and the outcomes of the laboratory studies conducted to analyze emulsion formation and separation kinetics. Moreover, the outcomes of numerical simulations performed using Ansys CFX software are also presented. According to these results, using the proposed approach the incremental oil production may reach 1.2 t/day (with a 13%… More >

  • Open Access

    ARTICLE

    Production Dynamic Prediction Method of Waterflooding Reservoir Based on Deep Convolution Generative Adversarial Network (DC-GAN)

    Liyuan Xin1,2,3, Xiang Rao1,2,3,*, Xiaoyin Peng1,2,3, Yunfeng Xu1,2,3, Jiating Chen1,2,3

    Energy Engineering, Vol.119, No.5, pp. 1905-1922, 2022, DOI:10.32604/ee.2022.019556

    Abstract The rapid production dynamic prediction of water-flooding reservoirs based on well location deployment has been the basis of production optimization of water-flooding reservoirs. Considering that the construction of geological models with traditional numerical simulation software is complicated, the computational efficiency of the simulation calculation is often low, and the numerical simulation tools need to be repeated iteratively in the process of model optimization, machine learning methods have been used for fast reservoir simulation. However, traditional artificial neural network (ANN) has large degrees of freedom, slow convergence speed, and complex network model. This paper aims to predict the production performance of… More >

  • Open Access

    ARTICLE

    Experimental Study and Numerical Simulation of Polymer Flooding

    Lei Bai1,2, Kai Li1,2,*, Ke Zhou3, Qingshan Wan1,2, Pengchao Sun1,2, Gaoming Yu3, Xiankang Xin3

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.6, pp. 1815-1826, 2022, DOI:10.32604/fdmp.2022.020271

    Abstract The numerical simulation of polymer flooding is a complex task as this process involves complex physical and chemical reactions, and multiple sets of characteristic parameters are required to properly set the simulation. At present, such characteristic parameters are mainly obtained by empirical methods, which typically result in relatively large errors. By analyzing experimentally polymer adsorption, permeability decline, inaccessible pore volume, viscosity-concentration relationship, and rheology, in this study, a conversion equation is provided to convert the experimental data into the parameters needed for the numerical simulation. Some examples are provided to demonstrate the reliability of the proposed approach. More > Graphic Abstract

    Experimental Study and Numerical Simulation of Polymer Flooding

  • Open Access

    ARTICLE

    Enforcing a Source-end Cooperative Multilevel Defense Mechanism to Counter Flooding Attack

    Saraswathi Shunmuganathan*

    Computer Systems Science and Engineering, Vol.44, No.1, pp. 67-79, 2023, DOI:10.32604/csse.2023.023858

    Abstract The exponential advancement in telecommunication embeds the Internet in every aspect of communication. Interconnections of networks all over the world impose monumental risks on the Internet. A Flooding Attack (FA) is one of the major intimidating risks on the Internet where legitimate users are prevented from accessing network services. Irrespective of the protective measures incorporated in the communication infrastructure, FA still persists due to the lack of global cooperation. Most of the existing mitigation is set up either at the traffic starting point or at the traffic ending point. Providing mitigation at one or the other end may not be… More >

  • Open Access

    ARTICLE

    Prediction of Low-Permeability Reservoirs Performances Using Long and Short-Term Memory Machine Learning

    Guowei Zhu*, Kangliang Guo, Haoran Yang, Xinchen Gao, Shuangshuang Zhang

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.5, pp. 1521-1528, 2022, DOI:10.32604/fdmp.2022.020942

    Abstract In order to overcome the typical limitations of numerical simulation methods used to estimate the production of low-permeability reservoirs, in this study, a new data-driven approach is proposed for the case of water-driven hypo-permeable reservoirs. In particular, given the bottlenecks of traditional recurrent neural networks in handling time series data, a neural network with long and short-term memory is used for such a purpose. This method can reduce the time required to solve a large number of partial differential equations. As such, it can therefore significantly improve the efficiency in predicting the needed production performances. Practical examples about water-driven hypotonic… More >

Displaying 1-10 on page 1 of 27. Per Page  

Share Link