Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (21)
  • Open Access

    ARTICLE

    Flow Patterns and Heat Transfer Characteristics of a Polymer Pulsating Heat Pipe Filled with Hydrofluoroether

    Nobuhito Nagasato1, Zhengyuan Pei1, Yasushi Koito2,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 49-63, 2024, DOI:10.32604/fhmt.2024.047502

    Abstract Visualization experiments were conducted to clarify the operational characteristics of a polymer pulsating heat pipe (PHP). Hydrofluoroether (HFE)-7100 was used as a working fluid, and its filling ratio was 50% of the entire PHP channel. A semi-transparent PHP was fabricated using a transparent polycarbonate sheet and a plastic 3D printer, and the movements of liquid slugs and vapor plugs of the working fluid were captured with a high-speed camera. The video images were then analyzed to obtain the flow patterns in the PHP. The heat transfer characteristics of the PHP were discussed based on the flow patterns and temperature distributions… More >

  • Open Access

    ARTICLE

    Experimental and Numerical Study on the Transient Flow Behavior in Gasoline Refueling System

    Chenlin Zhu1, Yan Zhao1, Zhitao Jiang1, Jiafeng Xie3, Lifang Zeng2,*, Lijuan Qian1,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 107-127, 2024, DOI:10.32604/fhmt.2023.044433

    Abstract Efficient and secure refueling within the vehicle refueling systems exhibits a close correlation with the issues concerning fuel backflow and gasoline evaporation. This paper investigates the transient flow behavior in fuel hose refilling and simplified tank fuel replenishment using the volume of fluid method. The numerical simulation is validated with the simplified hose refilling experiment and the evaporation simulation of Stefan tube. The effects of injection flow rate and injection directions have been discussed in the fuel hose refilling part. For both the experiment and simulation, the pressure at the end of the refueling pipe in the lower located nozzle… More >

  • Open Access

    ARTICLE

    A NUMERICAL STUDY OF THE EFFECT OF A BELOW-WINDOW CONVECTIVE HEATER ON THE HEAT TRANSFER RATE FROM A COLD RECESSED WINDOW

    Patrick H. Oosthuizen*

    Frontiers in Heat and Mass Transfer, Vol.2, No.1, pp. 1-8, 2011, DOI:10.5098/hmt.v2.1.3004

    Abstract The convective heat transfer to a window below which is mounted a natural convective heater has been numerically studied. The flow has been assumed to be three-dimensional and steady and to involve regions of laminar and turbulent flow. Fluid properties have been assumed constant except for the density change with temperature which leads to the buoyancy forces. The solution has been obtained using a commercial cfd code. Results have been obtained for a Prandtl number of 0.7. The effects of changes in the flow variables on the window Nusselt number and on the flow and temperature distributions have been examined. More >

  • Open Access

    ARTICLE

    A CRITICAL REVIEW OF RECENT INVESTIGATIONS ON FLOW PATTERN AND HEAT TRANSFER DURING FLOW BOILING IN MICRO-CHANNELS

    Sira Saisorna,b, Somchai Wongwisesb,c,*

    Frontiers in Heat and Mass Transfer, Vol.3, No.1, pp. 1-15, 2012, DOI:10.5098/hmt.v3.1.3006

    Abstract A summary of recent research on flow boiling in micro-channels is provided in this article. This review aims to survey and identify new findings arising in this important area, which may contribute to optimum design and process control of high performance miniature devices comprising extremely small channels. Several criteria for defining a micro-channel are presented at first and the recent works on micro-scale flow boiling are subsequently described into two parts including flow visualization and two-phase heat transfer. The results obtained from a number of p revious studies show that the flow behaviours and heat transfer mechanisms in micro-channels deviate… More >

  • Open Access

    ARTICLE

    HEAT TRANSFER CHARCACTERISTICS IN A COPPER MICRO-EVAPORATOR AND FLOW PATTERN-BASED PREDICTION METHOD FOR FLOW BOILING IN MICROCHANNELS

    Etienne Costa-Patrya, Jonathan Olivierb, John R. Thomea,∗

    Frontiers in Heat and Mass Transfer, Vol.3, No.1, pp. 1-14, 2012, DOI:10.5098/hmt.v3.1.3002

    Abstract This article presents new experimental results for two-phase flow boiling of R-134a, R-1234ze(E) and R-245fa in a micro-evaporator. The test section was made of copper and composed of 52 microchannels 163μm wide and 1560μm high with the channels separated by 178μm wide fins. The channels were 13.2mm long. There were 35 local heaters and temperature measurements arranged in a 5×7 array as a pseudo-CPU. The total pressure drops of the test section were below 20kPa in all cases. The wall heat transfer coefficients were generally above 10’000W/m2K and a function of the heat flux, vapor quality and mass flux. A… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Droplet Generation in Coaxial Microchannels

    Zongjun Yin*, Rong Su, Hui Xu

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.3, pp. 487-504, 2024, DOI:10.32604/fdmp.2023.042631

    Abstract In this study, numerical simulations of the pinching-off phenomena displayed by the dispersed phase in a continuous phase have been conducted using COMSOL Multiphysics (level-set method). Four flow patterns, namely “drop flow”, “jet flow”, “squeeze flow”, and “co-flow”, have been obtained for different flow velocity ratios, channel diameter ratios, density ratios, viscosity ratios, and surface tension. The flow pattern map of two-phase flow in coaxial microchannels has been obtained accordingly, and the associated droplet generation process has been critically discussed considering the related frequency, diameter, and pinch-off length. In particular, it is shown that the larger the flow velocity ratio,… More > Graphic Abstract

    Numerical Simulation of Droplet Generation in Coaxial Microchannels

  • Open Access

    ARTICLE

    Optimal Concentration of the Bubble Drainage Agent in Foam Drainage Gas Recovery Applications

    Shaopeng Liu1, Guowei Wang2,3,*, Pengfei Liu1, Dong Ye1, Jian Song1, Xing Liu1, Yang Cheng2,3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.12, pp. 3045-3058, 2023, DOI:10.32604/fdmp.2023.029810

    Abstract Foam drainage is the flow of liquid through the interstitial spaces between bubbles driven by capillarity and gravity and resisted by viscous damping. The so-called foam drainage gas recovery technology is a technique traditionally used to mitigate the serious bottom-hole liquid loading in the middle and late stages of gas well production. In this context, determining the optimal concentration of the bubble drainage agent is generally crucial for the proper application of this method. In this study, a combination of indoor experiments and theoretical analysis have been used to determine the pressure drop related to the foam-carrying capacity in a… More >

  • Open Access

    ARTICLE

    EFFECTS OF EVAPORATING TEMPERATURE ON FLOW PATTERN IN A HORIZONTAL EVAPORATOR

    Andriyanto Setyawana,*

    Frontiers in Heat and Mass Transfer, Vol.14, pp. 1-6, 2020, DOI:10.5098/hmt.14.22

    Abstract In this paper, the effect of evaporating temperature on the void fraction and flow pattern of R290 in an evaporator of air conditioning unit has been studied. The analysis was carried out for evaporator diameter of 7.9 mm and 6.3 mm and cooling capacity of 2.64 kW and 5.28 kW. The analysis was conducted at evaporating temperature of -20°C to +5°C with an increment of 5°C. At the inlet of evaporator, the void fraction ranges from 0.932 to 0.984, whereas at the outlet the void fraction is 1. Testing the void fraction by using 3 available correlations gives the good… More >

  • Open Access

    ARTICLE

    ALGORITHM AND INFLUENCE FACTOR STUDY ON FLOW PATTERN TRANSITION FROM STRATIFIED FLOW TO NON-STRATIFIED FLOW OF GAS-LIQUID TWO-PHASE FLOW

    Rongge Xiaoa,*, Dong Wanga, Shuaishuai Jina, Hongping Yub, Bo Liua

    Frontiers in Heat and Mass Transfer, Vol.16, pp. 1-9, 2021, DOI:10.5098/hmt.16.11

    Abstract Based on the Viscous Kelvin-Helmholtz theory used by D. Barnea & Y. Taitel (1993), a two-fluid stratified flow model of gas-liquid two-phase flow is established. Using the mathematical derivation, the influence of various influence factors on the stability of liquid level structure is synthesized. Compared with the criteria of D Barnea & Y. Taitel (1993) and Taitel & Dukler(1976) , and the algorithm of flow pattern transition criterion of stratified flow is proposed. According to the data of multiphase flow experimental loop, the influence of liquid viscosity and the instantaneous volume flow rate change of gas-liquid two-phase on the transition… More >

  • Open Access

    ARTICLE

    USE OF SILVER NANOPARTICLES MIXED WITH DEIONIZED WATER IN A RECTANGULAR TWO-PHASE CLOSED THERMOSYPHON: A CASE STUDY OF THE TWO-PHASE FLOW

    Namphon Pipatpaiboona , Teerapat Chompookhamb, Sampan Rittidechb, Yulong Dingc, Thanya Parametthanuwatd, Surachet Sichamnana,*

    Frontiers in Heat and Mass Transfer, Vol.19, pp. 1-9, 2022, DOI:10.5098/hmt.19.24

    Abstract When nanofluid (NF) is used as the working fluid in a rectangular two-phase closed thermosyphon (RTPCT), the formations and heat performance of two-phase flow patterns are explored qualitatively. Silver nanoparticles were mixed with deionized water at a concentration of 0.5 wt% in the NF. Nanoparticles improved the thermal contact surface area within the base flow, allowing the base fluid to boil quickly and easily. When the working fluid was boiled, NF also demonstrated high thermal conductivity capabilities, which diffused and moved along with the dual flow patterns. As a result, these qualities improved the RTPCT's efficiency. Considering the findings of… More >

Displaying 1-10 on page 1 of 21. Per Page