Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (16)
  • Open Access


    Comparative Investigations on Fracture Toughness and Damping Response of Fabric Reinforced Epoxy Composites


    Journal of Polymer Materials, Vol.39, No.3-4, pp. 255-267, 2022, DOI:10.32381/JPM.2022.39.3-4.6

    Abstract Studies were conducted to observe the effect of fracture toughness and damping response on fabric reinforced epoxy polymer composites. The samples of glass fabric, kevlar fabric and carbon fabric having 15wt%, 25wt%, 35wt%, 45wt% and 55wt % fabric content were prepared and tested following ASTM standards. Fracture toughness, peak load and increase in energy absorption are determined for the fabric-epoxy composites. Effect of temperature on storage modulus, loss modulus and tan delta values for various percentages of fabric epoxy composites are noticed and corresponding damping response behaviour is determined. The results revealed that reduction in More >

  • Open Access


    The Boundary Element Method for Ordinary State-Based Peridynamics

    Xue Liang1,2, Linjuan Wang3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2807-2834, 2024, DOI:10.32604/cmes.2024.046770

    Abstract The peridynamics (PD), as a promising nonlocal continuum mechanics theory, shines in solving discontinuous problems. Up to now, various numerical methods, such as the peridynamic mesh-free particle method (PD-MPM), peridynamic finite element method (PD-FEM), and peridynamic boundary element method (PD-BEM), have been proposed. PD-BEM, in particular, outperforms other methods by eliminating spurious boundary softening, efficiently handling infinite problems, and ensuring high computational accuracy. However, the existing PD-BEM is constructed exclusively for bond-based peridynamics (BBPD) with fixed Poisson’s ratio, limiting its applicability to crack propagation problems and scenarios involving infinite or semi-infinite problems. In this paper,… More >

  • Open Access


    Experimental Investigation on Fracture Performance of Short Basalt Fiber Bundle Reinforced Concrete

    Jinggan Shao1,2, Jiao Ma1, Renlong Liu1, Ye Liu3, Pu Zhang1,*, Yi Tang4, Yunjun Huang2

    Structural Durability & Health Monitoring, Vol.16, No.4, pp. 291-305, 2022, DOI:10.32604/sdhm.2022.015097

    Abstract In this paper, a notched three-point bending test is used to study the fracture performance of the short basalt fiber bundle reinforced concrete (SBFBRC). To compare and analyze the enhancement effect of different diameters and different content of basalt fiber bundles on the fracture performance of concrete, some groups are set up, and the P-CMOD curves of each group of specimens are measured, and the fracture toughness and fracture energy of each control group are calculated. The fracture toughness and fracture energy are two important fracture performance parameters to study the effect and law of… More >

  • Open Access


    Experimental Study of Mode-I and Mode-II Interlaminar Fracture Characteristics of Poplar LVL

    Zhongping Xiao1, Chen Li1,2, Biqing Shu1, Shukai Tang2, Xinghuan Yang2, Yan Liu2,*

    Journal of Renewable Materials, Vol.11, No.1, pp. 245-255, 2023, DOI:10.32604/jrm.2023.020751

    Abstract Fracture is a common failure form of poplar laminated veneer lumber (LVL). In the present work, we performed an experimental study on the mode-I along-grain interlaminar fracture, mode-I cross-grain interlaminar fracture, and mode-II interlaminar fracture of poplar LVL. We investigated stress mechanisms, failure modes, and fracture toughness values of the different fracture types. The experimental results revealed that the crack in the mode-I along-grain interlaminar fracture specimen propagated along the prefabricated crack direction, and the crack tip broke. The mode-I cross-grain interlaminar fracture specimen had cracks in the vertical direction near the prefabricated crack. In… More >

  • Open Access


    A Prediction Method of Fracture Toughness of Nickel-Based Superalloys

    Yabin Xu1,*, Lulu Cui1, Xiaowei Xu2

    Computer Systems Science and Engineering, Vol.42, No.1, pp. 121-132, 2022, DOI:10.32604/csse.2022.022758

    Abstract Fracture toughness plays a vital role in damage tolerance design of materials and assessment of structural integrity. To solve these problems of complexity, time-consuming, and low accuracy in obtaining the fracture toughness value of nickel-based superalloys through experiments. A combination prediction model is proposed based on the principle of materials genome engineering, the fracture toughness values of nickel-based superalloys at different temperatures, and different compositions can be predicted based on the existing experimental data. First, to solve the problem of insufficient feature extraction based on manual experience, the Deep Belief Network (DBN) is used to… More >

  • Open Access


    Influence of an Atmospheric Pressure Plasma Surface Treatment on the Interfacial Fracture Toughness on Bonded Composite Joints

    J. Mohan1, D. Carolan1, N. Murphy1, A. Ivankovic1, D. Dowling1

    Structural Durability & Health Monitoring, Vol.3, No.2, pp. 81-86, 2007, DOI:10.3970/sdhm.2007.003.081

    Abstract The aim of this work is to investigate the influence of a variety of plasma treatments on the surface properties of an epoxy-based composite material and to establish a relationship between these properties and the subsequent mechanical behaviour of adhesively bonded joints. To this end, specimens were subjected to three different types of plasma treatment: two short treatments (2min) of He and He plus O2, and one long treatment (15min) of He plus O2. The variation in surface energy of the composite specimens was examined in each case over a period of up to 3 days… More >

  • Open Access


    Cohesive Strength and Separation Energy as Characteristic Parameters of Fracture Toughness and Their Relation to Micromechanics

    W. Brocks1

    Structural Durability & Health Monitoring, Vol.1, No.4, pp. 233-244, 2005, DOI:10.3970/sdhm.2005.001.233

    Abstract A review on phenomenological fracture criteria is given, based on the energy balance for cracked bodies, and the respective toughness parameters are related to micromechanical processes. Griffith's idea of introducing a "surface energy" and Barenblatt's concept of a "process zone" ahead of the crack tip build the foundation of modern cohesive models, which have become versatile tools for numerical simulations of crack extension. The cohesive strength and the separation energy used as phenomenological material parameters in these models appear to represent a physically significant characterisation of "fracture toughness". Micromechanical interpretations of these parameters can be More >

  • Open Access


    Probability Methods for Estimation of Cleavage Fracture Toughness from Small Data Sets

    R. Moskovic1, P. E. J. Flewitt1,2

    Structural Durability & Health Monitoring, Vol.1, No.1, pp. 83-94, 2005, DOI:10.3970/sdhm.2005.001.083

    Abstract Consideration of the structural integrity is one of the inputs when evaluating potential solutions to plant problems. Structural integrity assessments of components forming the pressure boundaries of nuclear plant evaluate safety margins against cleavage fracture. These assessments consider the reserve factors between the applied stress and fracture toughness of the material as well as temperature margins between the operating temperature and the temperature at which the steel is ductile as defined by upper shelf behaviour. To carry out these structural integrity assessments, estimates of cleavage fracture toughness are required. The approach presented in this paper… More >

  • Open Access


    Fracture Characterization of High-Density Polyethylene Materials Using the Energetic Criterias

    M.N.D. Cherief1, M. Elmeguenni1, M. Benguediab1

    CMC-Computers, Materials & Continua, Vol.51, No.3, pp. 187-201, 2016, DOI:10.3970/cmc.2016.051.187

    Abstract Impact behavior of polymers has received considerable attention in recent years, and much work based on fracture mechanic approaches has been carried out. In this paper, fracture behavior in large deformation of a high density polyethylene (HDPE) materials was investigated through experimental impact testing on single edge notched specimen (SENB) and by using theoretical and analytical fracture criteria concepts. Moreover, a review of the main fracture criteria is given in order to characterize the toughness of this polymer in the both cases (static and dynamic). The fractured specimens obtained from the Charpy impact test were More >

  • Open Access


    Fracture Toughness of Carbon Nanofiber Reinforced Polylactic Acid at Room and Elevated Temperatures

    Y. Shimamura1, Y. Shibata2, K. Tohgo3, H. Araki4

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.6, No.3, pp. 189-194, 2008, DOI:10.3970/icces.2008.006.189

    Abstract Polylactic acid (PLA) is a biodegradable plastic made from lactic acid, and can be produced by renewable raw materials. The mechanical properties of PLA are, however, not sufficient for structural materials. In our study, carbon nanofiber reinforced PLA was fabricated to overcome the deficiency of PLA and the mechanical properties were measured at room and elevated temperatures. Vapor grown carbon fiber (VGCF) was used for reinforcement. Three point bending specimens were fabricated by using injection molding, and then bending stiffness, bending strength and fracture toughness were measured for amorphous and crystallized specimens. As a result, More >

Displaying 1-10 on page 1 of 16. Per Page