Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (534)
  • Open Access

    ARTICLE

    Detailed Observations of Convective Instability on an Interfacial Salty Layer

    R. Abdeljabar1, F. Onofri2, M.J. Safi1

    FDMP-Fluid Dynamics & Materials Processing, Vol.4, No.4, pp. 245-254, 2008, DOI:10.3970/fdmp.2008.004.245

    Abstract This paper focuses on the mechanisms of convective instability in a stable salty gradient layer (i.e. an interfacial salty layer). This layer is assumed to be initially confined between two homogeneous liquid layers: a lower layer composed of salty water of 5wt% concentration and an upper layer composed of distilled water. The mechanisms underlying the interfacial salty layer's instability are depicted experimentally using a PIV technique and via measurements of concentration and temperature. It is found that in addition to the effect of double-diffusion across the interfacial salty layer, different forms of Kelvin-Helmholtz instability occur at different locations:\newline i. At… More >

  • Open Access

    ARTICLE

    Permeability and Thermodiffusion Effect in a Porous Cavity Filled with Hydrocarbon Fluid Mixtures

    T. J Jaber1, M. Khawaja1, M.Z. Saghir1

    FDMP-Fluid Dynamics & Materials Processing, Vol.2, No.4, pp. 271-286, 2006, DOI:10.3970/fdmp.2006.002.271

    Abstract This paper numerically investigates the interaction between thermodiffuion and buoyancy driven convection in a laterally heated vertical porous cavity for different permeability. The Firoozabadi model is applied to binary hydrocarbon mixtures: (i) the mixture of 1,2,3,4 tetrahydronaphtalene (THN) and dodecane (C12) with mass fraction of 50% for each component, (ii) 1,2,3,4 tetrahydronaphtalene and isobutylbenzene (IBB) with mass fraction of 50% for each component, and (iii) isobutylbenzene and dodecane with mass fraction of 50% for each component. The thermal and molecular diffusion coefficients, which are functions of the temperature and other properties of mixture, are calculated at each point of the… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Liquid Phase Diffusion Growth of SiGe Single Crystals under Zero Gravity

    M. Sekhon1, N. Armour1, S. Dost1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.4, pp. 331-351, 2013, DOI:10.3970/fdmp.2013.009.331

    Abstract Liquid Phase Diffusion (LPD) growth of SixGe1-x single crystals has been numerically simulated under zero gravity. The objective was to examine growth rate and silicon concentration distribution in the LPD grown crystals under diffusion dominated mass transport prior to the planned LPD space experiments on the International Space Station (ISS). Since we are interested in predicting growth rate and crystal composition, the gravitational fluctuation of the ISS (g-jitter) was neglected and the gravity level was taken as zero for simplicity.
    A fixed grid approach has been utilized for the simulation. An integrated top-level solver was developed in OpenFOAM to carry… More >

  • Open Access

    ARTICLE

    Effects of the Velocity and the Nature of the Inert Gas on the Stainless Steel Laser Cut Quality

    S. Aggoune1, E.H. Amara1, M. Debiane2

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.1, pp. 61-75, 2013, DOI:10.3970/fdmp.2013.009.061

    Abstract The effects of inert assisting gas nature and velocity on laser cut quality are investigated. A pure fusion cutting process just above melting point is considered, where the molten steel velocity is given as a function of the two acting forces represented by the pressure gradient and the frictional forces applied by the laminar gas flow. In the case of nitrogen assisting gas, the stainless steel melt film exhibits a visible separation point. The point where the melt flow is separated out from the solid wall depends strongly on the gas velocity. It is pushed down the cut surface when… More >

  • Open Access

    ARTICLE

    Quasi Steady State Effect of Micro Vibration from Two Space Vehicles on Mixture During Thermodiffusion Experiment

    A.H. Ahadi1, M.Z. Saghir1

    FDMP-Fluid Dynamics & Materials Processing, Vol.8, No.4, pp. 397-422, 2012, DOI:10.3970/fdmp.2012.008.397

    Abstract The numerical simulations of a thermodiffusion experiment in atmospheric pressure binary mixtures of water and isopropanol subject to micro-vibrations at reduced gravity are presented. The vibrations are induced on board ISS and FOTON-M3 due to many different reasons like crew activity, spacecraft docking or operating other experiments, etc. The effects of micro-gravity vibration were investigated in detail on all of the mixture properties. The influences of different cavity sizes as well as different signs of Soret coefficients in the solvent were considered. In this paper, the thermodiffusion experiment was subjected to two different g-jitter vibrations on board ISS and FOTON-M3… More >

  • Open Access

    ARTICLE

    Thermodiffusion Applications in MEMS, NEMS and Solar Cell Fabrication by Thermal Metal Doping of Semiconductors

    Morteza Eslamian1,2, M. Ziad Saghir1,3

    FDMP-Fluid Dynamics & Materials Processing, Vol.8, No.4, pp. 353-380, 2012, DOI:10.3970/fdmp.2012.008.353

    Abstract In this paper recent advances pertinent to the applications of thermodiffusion or thermomigration in the fabrication of micro and nano metal-doped semiconductor-based patterns and devices are reviewed and discussed. In thermomigration, a spot, line, or layer of a p-type dopant, such as aluminum, which is deposited on a semiconductor surface, penetrates into the semiconductor body due to the presence of a temperature gradient applied across the wafer body. The trails of p-doped regions within an n-type semiconductor, in the form of columns or walls, may be used for several applications, such as the isolation of a part of a semiconductor… More >

  • Open Access

    ARTICLE

    A Comparative Study of G-jitter Effect on Thermal Diffusion aboard the International Space Station

    Y. Yan1, K. Jules2, M. Z. Saghir1

    FDMP-Fluid Dynamics & Materials Processing, Vol.3, No.3, pp. 231-246, 2007, DOI:10.3970/fdmp.2007.003.231

    Abstract Fluid science research including thermal diffusion in fluids benefits from the quiescent low-gravity environment provided by the International Space Station (ISS). However, residual gravities (or g-jitters) aboard the ISS impact the overall environment in which experiments are being performed. The impact of these residual gravities needs to be assessed to ensure that they are appropriately accounted for when results are being reported for experiments performed onboard the ISS. In this paper we study the thermal diffusion process in a ternary mixture of n-butane, dodecane and methane. Measured data from the Space Acceleration Measurement System (SAMS) acceleration system onboard the ISS… More >

  • Open Access

    ARTICLE

    Numerical Study of Low Frequency G-jitter Effect on Thermal Diffusion

    Y. Yan1, V. Shevtsova2, M. Z. Saghir1

    FDMP-Fluid Dynamics & Materials Processing, Vol.1, No.4, pp. 315-328, 2005, DOI:10.3970/fdmp.2005.001.315

    Abstract Convection has a major impact on diffusion in fluid mixtures either on the Earth or in the microgravity condition. G-jitters, as the primary source that induces the vibrational convection in space laboratories, should be studied thoroughly in order to improve the diffusion-dominated fluid science experiments. In this paper we consider the effect of g-jitters on thermal diffusion. The mixture water-isopropanol (90:10 wt%) bounded in a cubic cell is simulated with a lateral heating and various vibration conditions. The fluid flow, concentration and temperature distributions are thoroughly analyzed for different g-jitter scenarios. It is shown that the overall effect of vibrations… More >

  • Open Access

    ARTICLE

    On the Dynamic Capillary Effects in the Wetting and evaporation process of Binary Droplets

    K. Sefiane1

    FDMP-Fluid Dynamics & Materials Processing, Vol.1, No.3, pp. 267-276, 2005, DOI:10.3970/fdmp.2005.001.267

    Abstract In this paper the experimental results on the wetting behaviour of volatile binary sessile drops are reported. The evaporation rate is varied through the control of the ambient total pressure. The dynamic wetting contact angle of an evaporating Water-Ethanol drop is investigated at various sub-atmospheric pressures. The wetting properties (contact angle, shape and volume) are monitored in time using a drop shape analysis instrument. The results show that the evaporation of the binary droplet takes place in two stages: the first stage where the wetting behaviour is very similar to the pure ethanol case and a second stage where the… More >

  • Open Access

    ARTICLE

    Analysis of Hydrogen Permeation in Metals by Means of a New Anomalous Diffusion Model and Bayesian Inference

    Marco A.A. Kappel1, Diego C. Knupp1, Roberto P. Domingos1, IvanN. Bastos1

    CMC-Computers, Materials & Continua, Vol.49-50, No.1, pp. 13-29, 2015, DOI:10.3970/cmc.2015.049.013

    Abstract This work is aimed at the direct and inverse analysis of hydrogen permeation in steels employing a novel anomalous diffusion model. For the inverse analysis, experimental data for hydrogen permeation in a 13% chromium martensitic stainless steel, available in the literature [Turnbull, Carroll and Ferriss (1989)], was employed within the Bayesian framework for inverse problems. The comparison between the predicted values and the available experimental data demonstrates the feasibility of the new model in adequately describing the physical phenomena occurring in this particular problem. More >

Displaying 511-520 on page 52 of 534. Per Page