Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Analyzing the ZnO and CH3NH3PbI3 as Emitter Layer for Silicon Based Heterojunction Solar Cells

    Jasurbek Gulomov1,*, Oussama Accouche2, Rayimjon Aliev1, Marc AZAB2, Irodakhon Gulomova1

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 575-590, 2023, DOI:10.32604/cmc.2023.031289

    Abstract Today, it has become an important task to modify existing traditional silicon-based solar cell factory to produce high-efficiency silicon-based heterojunction solar cells, at a lower cost. Therefore, the aim of this paper is to analyze CH3NH3PbI3 and ZnO materials as an emitter layer for p-type silicon wafer-based heterojunction solar cells. CH3NH3PbI3 and ZnO can be synthesized using the cheap Sol-Gel method and can form n-type semiconductor. We propose to combine these two materials since CH3NH3PbI3 is a great light absorber and ZnO has an optimal complex refractive index which can be used as antireflection material. The photoelectric parameters of n-CH3NH3PbI3/p-Si,… More >

  • Open Access

    ARTICLE

    Synthesis of a Novel TiO2@Ag3PO4 Core-Shell Structure with Enhanced Photocatalytic Performance

    Chao Wei1,2, Zhongjin Peng2, Yunfei Chen3, Yanhai Cheng1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.4, pp. 973-984, 2022, DOI:10.32604/fdmp.2022.019772

    Abstract Ag3PO4 exhibits a high photocatalytic activity if exposed to visible light, however, it displays bottlenecks such as poor cycle-stability and mediocre ability to degrade methyl orange (MO) because of limited adsorption of MO molecules onto its surface. In this study, nano TiO2 prepared by a one-step method was combined with Ag3PO4 to form a TiO2@Ag3PO4 heterojunction in order to improve this material both in terms of photocatalysis and photostability. After adding a KH-570 silane coupling agent, the photocatalytic performance of TiO2@Ag3PO4 could be improved even further, with the degradation rate of MO maintained at more than 90% after three cycles… More >

  • Open Access

    ARTICLE

    Remarkably Enhanced Photodegradation of Organic Pollutants by NH2-UiO-66/ZnO Composite under Visible-Light Irradiation

    Dehong Teng1,#, Jing Zhang1,#, Xinzhi Luo1, Fei Jing1, Hengwei Wang1, Jing Chen1,* , Chao Yang1, Shaohong Zang1,*, Yingtang Zhou1,2

    Journal of Renewable Materials, Vol.10, No.9, pp. 2378-2391, 2022, DOI:10.32604/jrm.2022.019209

    Abstract Semiconductor photocatalysis is a novel highly efficient and low-cost method for removing organic pollutants from wastewater. However, the photoreduction performance of semiconductors on organic pollutants is limited due to the weak absorption of visible light caused by its wide band gap and low carrier utilization rate resulting from severe electron-holes recombination. In the present study, flower-like NH2-UiO-66 (NU66)/ZnO nanocomposites were prepared using a facile method and exhibited high efficiency under visible light driven photocatalysts. The X-ray diffractometer (XRD), scanning electron microscope (SEM), transmitor electron microscope (TEM), and X-ray photoelectron spectroscopy (XPS) were used to characterize the prepared samples, indicating that… More > Graphic Abstract

    Remarkably Enhanced Photodegradation of Organic Pollutants by NH<sub>2</sub>-UiO-66/ZnO Composite under Visible-Light Irradiation

  • Open Access

    ARTICLE

    Analysis and Characterization of Normally-Off Gallium Nitride High Electron Mobility Transistors

    Shahzaib Anwar1, Sardar Muhammad Gulfam1,*, Bilal Muhammad2, Syed Junaid Nawaz1, Khursheed Aurangzeb3, Mohammad Kaleem1

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 1021-1037, 2021, DOI:10.32604/cmc.2021.018248

    Abstract High electron mobility transistor (HEMT) based on gallium nitride (GaN) is one of the most promising candidates for the future generation of high frequencies and high-power electronic applications. This research work aims at designing and characterization of enhancement-mode or normally-off GaN HEMT. The impact of variations in gate length, mole concentration, barrier variations and other important design parameters on the performance of normally-off GaN HEMT is thoroughly investigated. An increase in the gate length causes a decrease in the drain current and transconductance, while an increase in drain current and transconductance can be achieved by increasing the concentration of aluminium… More >

Displaying 1-10 on page 1 of 4. Per Page