Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (39)
  • Open Access

    PROCEEDINGS

    Experimental And Numerical Modelling of Cyclic Softening and Damage Behaviors for a Turbine Rotor Material at Elevated Temperature

    M. Li1,2,*, D.H. Li3, Y. Rae1, W. Sun1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.24, No.1, pp. 1-2, 2022, DOI:10.32604/icces.2022.08759

    Abstract In order to better understand the physical process of deformation and cyclic softening a 12% Cr martensitic stainless steel FV566 has been cyclically tested at high temperature in strain control. Increase in temperature was found to increase the cyclic life, softening rate and viscous stress magnitude. An increase in the dwell time led to the acceleration of the material degradation. The microstructure changes and dominating deformation mechanisms were investigated by means of scanning electron microscopy, electron backscatter diffraction and transmission electron microscopy. The results have revealed a gradual sub-grain coarsening, transformation of lath structure into fine equiaxed sub-grains, and misorientation… More >

  • Open Access

    ARTICLE

    A Hybrid Local/Nonlocal Continuum Mechanics Modeling of Damage and Fracture in Concrete Structure at High Temperatures

    Runze Song1, Fei Han1,*, Yong Mei2,*, Yunhou Sun2, Ao Zhang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.133, No.2, pp. 389-412, 2022, DOI:10.32604/cmes.2022.021127

    Abstract This paper proposes a hybrid peridynamic and classical continuum mechanical model for the high-temperature damage and fracture analysis of concrete structures. In this model, we introduce the thermal expansion into peridynamics and then couple it with the thermoelasticity based on the Morphing method. In addition, a thermomechanical constitutive model of peridynamic bond is presented inspired by the classic Mazars model for the quasi-brittle damage evolution of concrete structures under high-temperature conditions. The validity and effectiveness of the proposed model are verified through two-dimensional numerical examples, in which the influence of temperature on the damage behavior of concrete structures is investigated.… More >

  • Open Access

    ARTICLE

    Transcriptome Analysis via RNA Sequencing Reveals the Molecular Mechanisms Underlying the Hedera helix Response to High Temperature

    Ting Zhang1,2, Ping Li3,*, Jiali Wei3,*

    Phyton-International Journal of Experimental Botany, Vol.91, No.11, pp. 2403-2417, 2022, DOI:10.32604/phyton.2022.022421

    Abstract Hedera helix is an evergreen ornamental plant that is resistant to cool but not high temperature and deserves to be further researched for improving its adaptability to heat stress. Two Hedera helix cultivars, heat-tolerant (HT) ‘Jessica’ and heat-sensitive (HS) ‘Shamrock’, were used for differences analyses of transcriptome. We detected 6179 differentially expressed genes (DEGs) and 5992 DEGs in ‘Jessica’ and ‘Shamrock’ to heat stress, respectively. Among these, 1983 upregulated DEGs and 1400 downregulated DEGs were shared between both varieties, resulting in enhancement of various pathways such as biosynthesis of secondary metabolites, glyoxylate dicarboxylate metabolism, and protein processing in endoplasmic reticulum… More >

  • Open Access

    ARTICLE

    Experimental Electromagnetic Characterization of High Temperature Superconductors Coils Located in Proximity to Electromagnetically Active Materials

    Yazid Statra, Sara Fawaz, Hocine Menana*, Bruno Douine

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.5, pp. 1529-1537, 2022, DOI:10.32604/fdmp.2022.021827

    Abstract The electromagnetic properties of high temperature superconductors (HTS) are characterized with the explicit intent to improve their integration in electric power systems. A tape and a coil made of Bismuth Strontium Calcium Copper Oxide (BSCCO) are considered in the presence of electromagnetically active materials in order to mimic properly the electromagnetic environment typical of electrical machines. The characterization consists of the determining the critical current and the AC losses at different values of the frequency and the transport current. The effects induced by the proximity of the active materials are studied and some related experimental issues are analyzedc. More >

  • Open Access

    ARTICLE

    Analysis of the Weight Loss of High Temperature Cement Slurry

    Kunhong Lv, Zhiqiang Huang*, Xingjie Ling, Xueqin Xia

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.5, pp. 1307-1318, 2022, DOI: 10.32604/fdmp.2022.020294

    Abstract The weight loss of cement slurry is the main cause of early annular air channeling and accurate experimental evaluation of the law of loss change is the key to achieve compression stability and prevent this undesired phenomenon. Typically, tests on the pressure loss of cement slurry are carried out for temperature smaller than 120°C, and this condition cannot simulate effectively the situation occurring in high temperature wells. For this reason, in this study a series of experimental tests have been conducted considering a larger range of temperatures, different retarders and fluid loss additives. The results show that with an increase… More >

  • Open Access

    ARTICLE

    Allantoin Alleviates Seed Germination Thermoinhibition in Arabidopsis

    Songbei Ying, Sasa Jing, Leheng Cheng, Haiqing Sun, Yuan Tian, Lulu Zhi, Ping Li*

    Phyton-International Journal of Experimental Botany, Vol.91, No.9, pp. 1893-1904, 2022, DOI:10.32604/phyton.2022.022679

    Abstract Allantoin as the metabolite of purine catabolism can store and remobilize nitrogen for plant growth and development. However, emerging evidence suggests it also contributes to plant tolerance to stress response through altering abscisic acid (ABA) and reducing reactive oxygen species (ROS) level. 1-CYS PEROXIREDOXIN (PER1) is a seed-specific antioxidant that enhances seed longevity through scavenging ROS over-accumulation. High temperature (HT) suppresses seed germination and induces seed secondary dormancy, called as seed germination thermoinhibition. However, the mechanism that allantoin and PER1 regulate seed germination thermoinhibition remains unknown. In this study, we reported that allantoin treatment enhances seed germination under HT stress.… More >

  • Open Access

    ARTICLE

    Response of Tomato Sugar and Acid Metabolism and Fruit Quality under Different High Temperature and Relative Humidity Conditions

    Yanjiao Zheng1, Zaiqiang Yang1,2,*, Tingting Wei1, Heli Zhao1

    Phyton-International Journal of Experimental Botany, Vol.91, No.9, pp. 2033-2054, 2022, DOI:10.32604/phyton.2022.019468

    Abstract The combined stress of high temperature and high relative air humidity is one of the most serious agrometeorological disasters that restricts the production capacity of protected agriculture. However, there is little information about the precise interaction between them on tomato fruit quality. The objectives of this study were to explore the effects of the combined stress of high temperature and relative humidity on the sugar and acid metabolism and fruit quality of tomato fruits, and to determine the best relative air humidity for fruit quality under high temperature environments. Four temperature treatments (32°C, 35°C, 38°C, 41°C), three relative air humidity… More >

  • Open Access

    ARTICLE

    Effects of High Temperature and Strong Light Combine Stress on Yield and Quality of Early Indica Rice with Different Amylose Content during Grout Filling

    Xiaofeng Ai1, Ruoyu Xiong1, Xueming Tan1, Haixia Wang1, Jun Zhang2, Yongjun Zeng1, Xiaohua Pan1, Qinghua Shi1, Taoju Liu1, Yanhua Zeng1,*

    Phyton-International Journal of Experimental Botany, Vol.91, No.6, pp. 1257-1267, 2022, DOI:10.32604/phyton.2022.018328

    Abstract High temperature (HT) accompanied with strong light (SL) often occurs in early indica rice production during grout filling stage in southern China, which accelerates grain ripening. Two indica rice cultivars with different amylose content (Zhongjiazao17, ZJZ17, high amylose content; Xiangzaoxian45, XZX45, low amylose content) were grown under control (CK), HT, and HT+SL conditions during grout filling to determine the effects on grain yield and quality of rice. The results showed that compared with CK, HT and HT+SL significantly reduced the 1000-grain weight and filled grain rate whether in high or low amylose content early indica rice cultivars during grout filling,… More >

  • Open Access

    ARTICLE

    Experimental Study on Compressive Strength of Recycled Aggregate Concrete under High Temperature

    Mohammad Akhtar1, Abdulsamee Halahla2, Amin Almasri3,*

    Structural Durability & Health Monitoring, Vol.15, No.4, pp. 335-348, 2021, DOI:10.32604/sdhm.2021.015988

    Abstract This research aims to study the effect of elevated temperature on the compressive strength evolution of concrete made with recycled aggregate. Demolished building concrete samples were collected from four different sites in Saudi Arabia, namely from Tabuk, Madina, Yanbu, and Riyadh. These concretes were crushed and recycled into aggregates to be used to make new concrete samples. These samples were tested for axial compressive strength at ages 3, 7, 14, and 28 days at ambient temperature. Samples of the same concrete mixes were subjected to the elevated temperature of 300°C and tested for compressive strength again. The experimental result reveals… More >

  • Open Access

    ARTICLE

    Numerical Investigation of Connection Performance of Timber-Concrete Composite Slabs with Inclined Self-Tapping Screws under High Temperature

    Zhentao Chen1, Weidong Lu1,2,*, Yingwei Bao1, Jun Zhang1, Lu Wang1, Kong Yue1

    Journal of Renewable Materials, Vol.10, No.1, pp. 89-104, 2022, DOI:10.32604/jrm.2021.015925

    Abstract The timber-concrete composite (TCC) slabs have become a preferred choice of floor systems in modern multi story timber buildings. This TCC slab consisted of timber and a concrete slab which were commonly connected together with inclined self-tapping screws (STSs). To more accurately predict the fire performance of TCC slabs, the mechanical behavior of TCC connections under high temperature was investigated by numerical simulation in this study. The interface slip of TCC connections was simulated by a proposed Finite Element (FE) model at room temperature, and different diameter and penetration length screws were considered. The effectiveness of this FE model was… More > Graphic Abstract

    Numerical Investigation of Connection Performance of Timber-Concrete Composite Slabs with Inclined Self-Tapping Screws under High Temperature

Displaying 11-20 on page 2 of 39. Per Page