Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (56)
  • Open Access

    ARTICLE

    Predicting Lumbar Spondylolisthesis: A Hybrid Deep Learning Approach

    Deepika Saravagi1, Shweta Agrawal2,*, Manisha Saravagi3, Sanjiv K. Jain4, Bhisham Sharma5, Abolfazl Mehbodniya6,*, Subrata Chowdhury7, Julian L. Webber6

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 2133-2151, 2023, DOI:10.32604/iasc.2023.039836 - 21 June 2023

    Abstract Spondylolisthesis is a chronic disease, and a timely diagnosis of it may help in avoiding surgery. Disease identification in x-ray radiographs is very challenging. Strengthening the feature extraction tool in VGG16 has improved the classification rate. But the fully connected layers of VGG16 are not efficient at capturing the positional structure of an object in images. Capsule network (CapsNet) works with capsules (neuron clusters) rather than a single neuron to grasp the properties of the provided image to match the pattern. In this study, an integrated model that is a combination of VGG16 and CapsNet… More >

  • Open Access

    ARTICLE

    Identification of Tuberculosis and Coronavirus Patients Using Hybrid Deep Learning Models

    Mohammed A. Al Ghamdi*

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 881-894, 2023, DOI:10.32604/cmc.2023.037826 - 08 June 2023

    Abstract Considerable resources, technology, and efforts are being utilized worldwide to eradicate the coronavirus. Although certain measures taken to prevent the further spread of the disease have been successful, efforts to completely wipe out the coronavirus have been insufficient. Coronavirus patients have symptoms similar to those of chest Tuberculosis (TB) or pneumonia patients. Chest tuberculosis and coronavirus are similar because both diseases affect the lungs, cause coughing and produce an irregular respiratory system. Both diseases can be confirmed through X-ray imaging. It is a difficult task to diagnose COVID-19, as coronavirus testing kits are neither excessively… More >

  • Open Access

    ARTICLE

    Wind Speed Prediction Using Chicken Swarm Optimization with Deep Learning Model

    R. Surendran1,*, Youseef Alotaibi2, Ahmad F. Subahi3

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3371-3386, 2023, DOI:10.32604/csse.2023.034465 - 03 April 2023

    Abstract High precision and reliable wind speed forecasting have become a challenge for meteorologists. Convective events, namely, strong winds, thunderstorms, and tornadoes, along with large hail, are natural calamities that disturb daily life. For accurate prediction of wind speed and overcoming its uncertainty of change, several prediction approaches have been presented over the last few decades. As wind speed series have higher volatility and nonlinearity, it is urgent to present cutting-edge artificial intelligence (AI) technology. In this aspect, this paper presents an intelligent wind speed prediction using chicken swarm optimization with the hybrid deep learning (IWSP-CSODL)… More >

  • Open Access

    ARTICLE

    Automated Spam Review Detection Using Hybrid Deep Learning on Arabic Opinions

    Ibrahim M. Alwayle1, Badriyya B. Al-onazi2, Mohamed K. Nour3, Khaled M. Alalayah1, Khadija M. Alaidarous1, Ibrahim Abdulrab Ahmed4, Amal S. Mehanna5, Abdelwahed Motwakel6,*

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 2947-2961, 2023, DOI:10.32604/csse.2023.034456 - 03 April 2023

    Abstract Online reviews regarding purchasing services or products offered are the main source of users’ opinions. To gain fame or profit, generally, spam reviews are written to demote or promote certain targeted products or services. This practice is called review spamming. During the last few years, various techniques have been recommended to solve the problem of spam reviews. Previous spam detection study focuses on English reviews, with a lesser interest in other languages. Spam review detection in Arabic online sources is an innovative topic despite the vast amount of data produced. Thus, this study develops an… More >

  • Open Access

    ARTICLE

    Hunter Prey Optimization with Hybrid Deep Learning for Fake News Detection on Arabic Corpus

    Hala J. Alshahrani1, Abdulkhaleq Q. A. Hassan2, Khaled Tarmissi3, Amal S. Mehanna4, Abdelwahed Motwakel5,*, Ishfaq Yaseen5, Amgad Atta Abdelmageed5, Mohamed I. Eldesouki6

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 4255-4272, 2023, DOI:10.32604/cmc.2023.034821 - 31 March 2023

    Abstract Nowadays, the usage of social media platforms is rapidly increasing, and rumours or false information are also rising, especially among Arab nations. This false information is harmful to society and individuals. Blocking and detecting the spread of fake news in Arabic becomes critical. Several artificial intelligence (AI) methods, including contemporary transformer techniques, BERT, were used to detect fake news. Thus, fake news in Arabic is identified by utilizing AI approaches. This article develops a new hunter-prey optimization with hybrid deep learning-based fake news detection (HPOHDL-FND) model on the Arabic corpus. The HPOHDL-FND technique undergoes extensive More >

  • Open Access

    ARTICLE

    Hybrid Deep Learning Enabled Load Prediction for Energy Storage Systems

    Firas Abedi1, Hayder M. A. Ghanimi2, Mohammed A. M. Sadeeq3, Ahmed Alkhayyat4,*, Zahraa H. Kareem5, Sarmad Nozad Mahmood6, Ali Hashim Abbas7, Ali S. Abosinnee8, Waleed Khaild Al-Azzawi9, Mustafa Musa Jaber10,11, Mohammed Dauwed12

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3359-3374, 2023, DOI:10.32604/cmc.2023.034221 - 31 March 2023

    Abstract Recent economic growth and development have considerably raised energy consumption over the globe. Electric load prediction approaches become essential for effective planning, decision-making, and contract evaluation of the power systems. In order to achieve effective forecasting outcomes with minimum computation time, this study develops an improved whale optimization with deep learning enabled load prediction (IWO-DLELP) scheme for energy storage systems (ESS) in smart grid platform. The major intention of the IWO-DLELP technique is to effectually forecast the electric load in SG environment for designing proficient ESS. The proposed IWO-DLELP model initially undergoes pre-processing in two More >

  • Open Access

    ARTICLE

    A Hybrid Deep Learning Approach for PM2.5 Concentration Prediction in Smart Environmental Monitoring

    Minh Thanh Vo1, Anh H. Vo2, Huong Bui3, Tuong Le4,5,*

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3029-3041, 2023, DOI:10.32604/iasc.2023.034636 - 15 March 2023

    Abstract Nowadays, air pollution is a big environmental problem in developing countries. In this problem, particulate matter 2.5 (PM2.5) in the air is an air pollutant. When its concentration in the air is high in developing countries like Vietnam, it will harm everyone’s health. Accurate prediction of PM2.5 concentrations can help to make the correct decision in protecting the health of the citizen. This study develops a hybrid deep learning approach named PM25-CBL model for PM2.5 concentration prediction in Ho Chi Minh City, Vietnam. Firstly, this study analyzes the effects of variables on PM2.5 concentrations in… More >

  • Open Access

    ARTICLE

    Gender Identification Using Marginalised Stacked Denoising Autoencoders on Twitter Data

    Badriyya B. Al-onazi1, Mohamed K. Nour2, Hassan Alshamrani3, Mesfer Al Duhayyim4,*, Heba Mohsen5, Amgad Atta Abdelmageed6, Gouse Pasha Mohammed6, Abu Sarwar Zamani6

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2529-2544, 2023, DOI:10.32604/iasc.2023.034623 - 15 March 2023

    Abstract Gender analysis of Twitter could reveal significant socio-cultural differences between female and male users. Efforts had been made to analyze and automatically infer gender formerly for more commonly spoken languages’ content, but, as we now know that limited work is being undertaken for Arabic. Most of the research works are done mainly for English and least amount of effort for non-English language. The study for Arabic demographic inference like gender is relatively uncommon for social networking users, especially for Twitter. Therefore, this study aims to design an optimal marginalized stacked denoising autoencoder for gender identification… More >

  • Open Access

    ARTICLE

    Short Term Traffic Flow Prediction Using Hybrid Deep Learning

    Mohandu Anjaneyulu, Mohan Kubendiran*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1641-1656, 2023, DOI:10.32604/cmc.2023.035056 - 06 February 2023

    Abstract Traffic flow prediction in urban areas is essential in the Intelligent Transportation System (ITS). Short Term Traffic Flow (STTF) prediction impacts traffic flow series, where an estimation of the number of vehicles will appear during the next instance of time per hour. Precise STTF is critical in Intelligent Transportation System. Various extinct systems aim for short-term traffic forecasts, ensuring a good precision outcome which was a significant task over the past few years. The main objective of this paper is to propose a new model to predict STTF for every hour of a day. In… More >

  • Open Access

    ARTICLE

    Optimal Hybrid Deep Learning Enabled Attack Detection and Classification in IoT Environment

    Fahad F. Alruwaili*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 99-115, 2023, DOI:10.32604/cmc.2023.034752 - 06 February 2023

    Abstract The Internet of Things (IoT) paradigm enables end users to access networking services amongst diverse kinds of electronic devices. IoT security mechanism is a technology that concentrates on safeguarding the devices and networks connected in the IoT environment. In recent years, False Data Injection Attacks (FDIAs) have gained considerable interest in the IoT environment. Cybercriminals compromise the devices connected to the network and inject the data. Such attacks on the IoT environment can result in a considerable loss and interrupt normal activities among the IoT network devices. The FDI attacks have been effectively overcome so… More >

Displaying 21-30 on page 3 of 56. Per Page