Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (44)
  • Open Access

    ARTICLE

    A Hybrid Deep Learning Model for Real Time Hand Gestures Recognition

    S. Gnanapriya1,*, K. Rahimunnisa2

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 1105-1119, 2023, DOI:10.32604/iasc.2023.032832

    Abstract The performance of Hand Gesture Recognition (HGR) depends on the hand shape. Segmentation helps in the recognition of hand gestures for more accuracy and improves the overall performance compared to other existing deep neural networks. The crucial segmentation task is extremely complicated because of the background complexity, variation in illumination etc. The proposed modified UNET and ensemble model of Convolutional Neural Networks (CNN) undergoes a two stage process and results in proper hand gesture recognition. The first stage is segmenting the regions of the hand and the second stage is gesture identification. The modified UNET More >

  • Open Access

    ARTICLE

    Real-Time Multiple Guava Leaf Disease Detection from a Single Leaf Using Hybrid Deep Learning Technique

    Javed Rashid1,2, Imran Khan1, Ghulam Ali3, Shafiq ur Rehman4, Fahad Alturise5, Tamim Alkhalifah5,*

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 1235-1257, 2023, DOI:10.32604/cmc.2023.032005

    Abstract The guava plant has achieved viable significance in subtropics and tropics owing to its flexibility to climatic environments, soil conditions and higher human consumption. It is cultivated in vast areas of Asian and Non-Asian countries, including Pakistan. The guava plant is vulnerable to diseases, specifically the leaves and fruit, which result in massive crop and profitability losses. The existing plant leaf disease detection techniques can detect only one disease from a leaf. However, a single leaf may contain symptoms of multiple diseases. This study has proposed a hybrid deep learning-based framework for the real-time detection… More >

  • Open Access

    ARTICLE

    Hybrid Deep Learning-Improved BAT Optimization Algorithm for Soil Classification Using Hyperspectral Features

    S. Prasanna Bharathi1,2, S. Srinivasan1,*, G. Chamundeeswari1, B. Ramesh1

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 579-594, 2023, DOI:10.32604/csse.2023.027592

    Abstract Now a days, Remote Sensing (RS) techniques are used for earth observation and for detection of soil types with high accuracy and better reliability. This technique provides perspective view of spatial resolution and aids in instantaneous measurement of soil’s minerals and its characteristics. There are a few challenges that is present in soil classification using image enhancement such as, locating and plotting soil boundaries, slopes, hazardous areas, drainage condition, land use, vegetation etc. There are some traditional approaches which involves few drawbacks such as, manual involvement which results in inaccuracy due to human interference, time… More >

  • Open Access

    ARTICLE

    Hybrid Deep Learning Method for Diagnosis of Cucurbita Leaf Diseases

    V. Nirmala1,*, B. Gomathy2

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 2585-2601, 2023, DOI:10.32604/csse.2023.027512

    Abstract In agricultural engineering, the main challenge is on methodologies used for disease detection. The manual methods depend on the experience of the personal. Due to large variation in environmental condition, disease diagnosis and classification becomes a challenging task. Apart from the disease, the leaves are affected by climate changes which is hard for the image processing method to discriminate the disease from the other background. In Cucurbita gourd family, the disease severity examination of leaf samples through computer vision, and deep learning methodologies have gained popularity in recent years. In this paper, a hybrid method More >

  • Open Access

    ARTICLE

    Hunger Search Optimization with Hybrid Deep Learning Enabled Phishing Detection and Classification Model

    Hadil Shaiba1, Jaber S. Alzahrani2, Majdy M. Eltahir3, Radwa Marzouk4, Heba Mohsen5, Manar Ahmed Hamza6,*

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 6425-6441, 2022, DOI:10.32604/cmc.2022.031625

    Abstract Phishing is one of the simplest ways in cybercrime to hack the reliable data of users such as passwords, account identifiers, bank details, etc. In general, these kinds of cyberattacks are made at users through phone calls, emails, or instant messages. The anti-phishing techniques, currently under use, are mainly based on source code features that need to scrape the webpage content. In third party services, these techniques check the classification procedure of phishing Uniform Resource Locators (URLs). Even though Machine Learning (ML) techniques have been lately utilized in the identification of phishing, they still need… More >

  • Open Access

    ARTICLE

    Hybrid Deep Learning-Based Adaptive Multiple Access Schemes Underwater Wireless Networks

    D. Anitha1,*, R. A. Karthika2

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 2463-2477, 2023, DOI:10.32604/iasc.2023.023361

    Abstract Achieving sound communication systems in Under Water Acoustic (UWA) environment remains challenging for researchers. The communication scheme is complex since these acoustic channels exhibit uneven characteristics such as long propagation delay and irregular Doppler shifts. The development of machine and deep learning algorithms has reduced the burden of achieving reliable and good communication schemes in the underwater acoustic environment. This paper proposes a novel intelligent selection method between the different modulation schemes such as Code Division Multiple Access(CDMA), Time Division Multiple Access(TDMA), and Orthogonal Frequency Division Multiplexing(OFDM) techniques using the hybrid combination of the convolutional More >

  • Open Access

    ARTICLE

    HDLIDP: A Hybrid Deep Learning Intrusion Detection and Prevention Framework

    Magdy M. Fadel1,*, Sally M. El-Ghamrawy2, Amr M. T. Ali-Eldin1, Mohammed K. Hassan3, Ali I. El-Desoky1

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 2293-2312, 2022, DOI:10.32604/cmc.2022.028287

    Abstract Distributed denial-of-service (DDoS) attacks are designed to interrupt network services such as email servers and webpages in traditional computer networks. Furthermore, the enormous number of connected devices makes it difficult to operate such a network effectively. Software defined networks (SDN) are networks that are managed through a centralized control system, according to researchers. This controller is the brain of any SDN, composing the forwarding table of all data plane network switches. Despite the advantages of SDN controllers, DDoS attacks are easier to perpetrate than on traditional networks. Because the controller is a single point of More >

  • Open Access

    ARTICLE

    Hybrid Deep Learning Based Attack Detection for Imbalanced Data Classification

    Rasha Almarshdi1,2,*, Laila Nassef1, Etimad Fadel1, Nahed Alowidi1

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 297-320, 2023, DOI:10.32604/iasc.2023.026799

    Abstract Internet of Things (IoT) is the most widespread and fastest growing technology today. Due to the increasing of IoT devices connected to the Internet, the IoT is the most technology under security attacks. The IoT devices are not designed with security because they are resource constrained devices. Therefore, having an accurate IoT security system to detect security attacks is challenging. Intrusion Detection Systems (IDSs) using machine learning and deep learning techniques can detect security attacks accurately. This paper develops an IDS architecture based on Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) deep learning… More >

  • Open Access

    ARTICLE

    Hybrid Deep Learning Enabled Intrusion Detection in Clustered IIoT Environment

    Radwa Marzouk1, Fadwa Alrowais2, Noha Negm3, Mimouna Abdullah Alkhonaini4, Manar Ahmed Hamza5,*, Mohammed Rizwanullah5, Ishfaq Yaseen5, Abdelwahed Motwakel5

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 3763-3775, 2022, DOI:10.32604/cmc.2022.027483

    Abstract Industrial Internet of Things (IIoT) is an emerging field which connects digital equipment as well as services to physical systems. Intrusion detection systems (IDS) can be designed to protect the system from intrusions or attacks. In this view, this paper presents a novel hybrid deep learning with metaheuristics enabled intrusion detection (HDL-MEID) technique for clustered IIoT environments. The HDL-MEID model mainly intends to organize the IIoT devices into clusters and enabled secure communication. Primarily, the HDL-MEID technique designs a new chaotic mayfly optimization (CMFO) based clustering approach for the effective choice of the Cluster Heads More >

  • Open Access

    ARTICLE

    Hybrid Deep Learning Enabled Air Pollution Monitoring in ITS Environment

    Ashit Kumar Dutta1, Jenyfal Sampson2, Sultan Ahmad3, T. Avudaiappan4, Kanagaraj Narayanasamy5,*, Irina V. Pustokhina6, Denis A. Pustokhin7

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 1157-1172, 2022, DOI:10.32604/cmc.2022.024109

    Abstract Intelligent Transportation Systems (ITS) have become a vital part in improving human lives and modern economy. It aims at enhancing road safety and environmental quality. There is a tremendous increase observed in the number of vehicles in recent years, owing to increasing population. Each vehicle has its own individual emission rate; however, the issue arises when the emission rate crosses a standard value. Owing to the technological advances made in Artificial Intelligence (AI) techniques, it is easy to leverage it to develop prediction approaches so as to monitor and control air pollution. The current research… More >

Displaying 21-30 on page 3 of 44. Per Page