Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (73)
  • Open Access

    ARTICLE

    Performance Evaluation of Deep Dense Layer Neural Network for Diabetes Prediction

    Niharika Gupta1, Baijnath Kaushik1, Mohammad Khalid Imam Rahmani2,*, Saima Anwar Lashari2,*

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 347-366, 2023, DOI:10.32604/cmc.2023.038864 - 08 June 2023

    Abstract Diabetes is one of the fastest-growing human diseases worldwide and poses a significant threat to the population’s longer lives. Early prediction of diabetes is crucial to taking precautionary steps to avoid or delay its onset. In this study, we proposed a Deep Dense Layer Neural Network (DDLNN) for diabetes prediction using a dataset with 768 instances and nine variables. We also applied a combination of classical machine learning (ML) algorithms and ensemble learning algorithms for the effective prediction of the disease. The classical ML algorithms used were Support Vector Machine (SVM), Logistic Regression (LR), Decision… More >

  • Open Access

    ARTICLE

    Chicken Swarm Optimization with Deep Learning Based Packaged Rooftop Units Fault Diagnosis Model

    G. Anitha1, N. Supriya2, Fayadh Alenezi3, E. Laxmi Lydia4, Gyanendra Prasad Joshi5, Jinsang You6,*

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 221-238, 2023, DOI:10.32604/csse.2023.036479 - 26 May 2023

    Abstract Rooftop units (RTUs) were commonly employed in small commercial buildings that represent that can frequently do not take the higher level maintenance that chillers receive. Fault detection and diagnosis (FDD) tools can be employed for RTU methods to ensure essential faults are addressed promptly. In this aspect, this article presents an Optimal Deep Belief Network based Fault Detection and Classification on Packaged Rooftop Units (ODBNFDC-PRTU) model. The ODBNFDC-PRTU technique considers fault diagnosis as a multi-class classification problem and is handled using DL models. For fault diagnosis in RTUs, the ODBNFDC-PRTU model exploits the deep belief More >

  • Open Access

    ARTICLE

    Energy Efficient Hyperparameter Tuned Deep Neural Network to Improve Accuracy of Near-Threshold Processor

    K. Chanthirasekaran, Raghu Gundaala*

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 471-489, 2023, DOI:10.32604/iasc.2023.036130 - 29 April 2023

    Abstract When it comes to decreasing margins and increasing energy efficiency in near-threshold and sub-threshold processors, timing error resilience may be viewed as a potentially lucrative alternative to examine. On the other hand, the currently employed approaches have certain restrictions, including high levels of design complexity, severe time constraints on error consolidation and propagation, and uncontaminated architectural registers (ARs). The design of near-threshold circuits, often known as NT circuits, is becoming the approach of choice for the construction of energy-efficient digital circuits. As a result of the exponentially decreased driving current, there was a reduction in… More >

  • Open Access

    ARTICLE

    Hyperparameter Optimization Based Deep Belief Network for Clean Buses Using Solar Energy Model

    Shekaina Justin1,*, Wafaa Saleh1,2, Tasneem Al Ghamdi1, J. Shermina3

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 1091-1109, 2023, DOI:10.32604/iasc.2023.032589 - 29 April 2023

    Abstract Renewable energy has become a solution to the world’s energy concerns in recent years. Photovoltaic (PV) technology is the fastest technique to convert solar radiation into electricity. Solar-powered buses, metros, and cars use PV technology. Such technologies are always evolving. Included in the parameters that need to be analysed and examined include PV capabilities, vehicle power requirements, utility patterns, acceleration and deceleration rates, and storage module type and capacity, among others. PVPG is intermittent and weather-dependent. Accurate forecasting and modelling of PV system output power are key to managing storage, delivery, and smart grids. With… More >

  • Open Access

    ARTICLE

    Hybrid Metaheuristics with Deep Learning Enabled Automated Deception Detection and Classification of Facial Expressions

    Haya Alaskar*

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5433-5449, 2023, DOI:10.32604/cmc.2023.035266 - 29 April 2023

    Abstract Automatic deception recognition has received considerable attention from the machine learning community due to recent research on its vast application to social media, interviews, law enforcement, and the military. Video analysis-based techniques for automated deception detection have received increasing interest. This study develops a new self-adaptive population-based firefly algorithm with a deep learning-enabled automated deception detection (SAPFF-DLADD) model for analyzing facial cues. Initially, the input video is separated into a set of video frames. Then, the SAPFF-DLADD model applies the MobileNet-based feature extractor to produce a useful set of features. The long short-term memory (LSTM) More >

  • Open Access

    ARTICLE

    Artificial Intelligence in Internet of Things System for Predicting Water Quality in Aquaculture Fishponds

    Po-Yuan Yang1,*, Yu-Cheng Liao2, Fu-I Chou2

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 2861-2880, 2023, DOI:10.32604/csse.2023.036810 - 03 April 2023

    Abstract Aquaculture has long been a critical economic sector in Taiwan. Since a key factor in aquaculture production efficiency is water quality, an effective means of monitoring the dissolved oxygen content (DOC) of aquaculture water is essential. This study developed an internet of things system for monitoring DOC by collecting essential data related to water quality. Artificial intelligence technology was used to construct a water quality prediction model for use in a complete system for managing water quality. Since aquaculture water quality depends on a continuous interaction among multiple factors, and the current state is correlated… More >

  • Open Access

    ARTICLE

    MNIST Handwritten Digit Classification Based on Convolutional Neural Network with Hyperparameter Optimization

    Haijian Shao1, Edwin Ma2, Ming Zhu1, Xing Deng3, Shengjie Zhai1,*

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3595-3606, 2023, DOI:10.32604/iasc.2023.036323 - 15 March 2023

    Abstract Accurate handwriting recognition has been a challenging computer vision problem, because static feature analysis of the text pictures is often inadequate to account for high variance in handwriting styles across people and poor image quality of the handwritten text. Recently, by introducing machine learning, especially convolutional neural networks (CNNs), the recognition accuracy of various handwriting patterns is steadily improved. In this paper, a deep CNN model is developed to further improve the recognition rate of the MNIST handwritten digit dataset with a fast-converging rate in training. The proposed model comes with a multi-layer deep arrange More >

  • Open Access

    ARTICLE

    Applied Linguistics with Mixed Leader Optimizer Based English Text Summarization Model

    Hala J. Alshahrani1, Khaled Tarmissi2, Ayman Yafoz3, Abdullah Mohamed4, Manar Ahmed Hamza5,*, Ishfaq Yaseen5, Abu Sarwar Zamani5, Mohammad Mahzari6

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3203-3219, 2023, DOI:10.32604/iasc.2023.034848 - 15 March 2023

    Abstract The term ‘executed linguistics’ corresponds to an interdisciplinary domain in which the solutions are identified and provided for real-time language-related problems. The exponential generation of text data on the Internet must be leveraged to gain knowledgeable insights. The extraction of meaningful insights from text data is crucial since it can provide value-added solutions for business organizations and end-users. The Automatic Text Summarization (ATS) process reduces the primary size of the text without losing any basic components of the data. The current study introduces an Applied Linguistics-based English Text Summarization using a Mixed Leader-Based Optimizer with… More >

  • Open Access

    ARTICLE

    Hyperparameter Tuned Deep Hybrid Denoising Autoencoder Breast Cancer Classification on Digital Mammograms

    Manar Ahmed Hamza*

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2879-2895, 2023, DOI:10.32604/iasc.2023.034719 - 15 March 2023

    Abstract Breast Cancer (BC) is considered the most commonly scrutinized cancer in women worldwide, affecting one in eight women in a lifetime. Mammography screening becomes one such standard method that is helpful in identifying suspicious masses’ malignancy of BC at an initial level. However, the prior identification of masses in mammograms was still challenging for extremely dense and dense breast categories and needs an effective and automatic mechanisms for helping radiotherapists in diagnosis. Deep learning (DL) techniques were broadly utilized for medical imaging applications, particularly breast mass classification. The advancements in the DL field paved the… More >

  • Open Access

    ARTICLE

    Hyperparameter Tuning for Deep Neural Networks Based Optimization Algorithm

    D. Vidyabharathi1,*, V. Mohanraj2

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2559-2573, 2023, DOI:10.32604/iasc.2023.032255 - 15 March 2023

    Abstract For training the present Neural Network (NN) models, the standard technique is to utilize decaying Learning Rates (LR). While the majority of these techniques commence with a large LR, they will decay multiple times over time. Decaying has been proved to enhance generalization as well as optimization. Other parameters, such as the network’s size, the number of hidden layers, dropouts to avoid overfitting, batch size, and so on, are solely based on heuristics. This work has proposed Adaptive Teaching Learning Based (ATLB) Heuristic to identify the optimal hyperparameters for diverse networks. Here we consider three More >

Displaying 21-30 on page 3 of 73. Per Page