Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (169)
  • Open Access

    ARTICLE

    Application of Numerical Methods to Elasticity Imaging

    Benjamin Castaneda, Juvenal Ormachea, Paul Rodríguez, Kevin J. Parker§

    Molecular & Cellular Biomechanics, Vol.10, No.1, pp. 43-65, 2013, DOI:10.3970/mcb.2013.010.043

    Abstract Elasticity imaging can be understood as the intersection of the study of biomechanical properties, imaging sciences, and physics. It was mainly motivated by the fact that pathological tissue presents an increased stiffness when compared to surrounding normal tissue. In the last two decades, research on elasticity imaging has been an international and interdisciplinary pursuit aiming to map the viscoelastic properties of tissue in order to provide clinically useful information. As a result, several modalities of elasticity imaging, mostly based on ultrasound but also on magnetic resonance imaging and optical coherence tomography, have been proposed and applied to a number of… More >

  • Open Access

    ARTICLE

    A Learning Based Brain Tumor Detection System

    Sultan Noman Qasem1,2, Amar Nazar3, Attia Qamar4, Shahaboddin Shamshirband5,6,*, Ahmad Karim4

    CMC-Computers, Materials & Continua, Vol.59, No.3, pp. 713-727, 2019, DOI:10.32604/cmc.2019.05617

    Abstract Brain tumor is one of the most dangerous disease that causes due to uncontrollable and abnormal cell partition. In this paper, we have used MRI brain scan in comparison with CT brain scan as it is less harmful to detect brain tumor. We considered watershed segmentation technique for brain tumor detection. The proposed methodology is divided as follows: pre-processing, computing foreground applying watershed, extract and supply features to machine learning algorithms. Consequently, this study is tested on big data set of images and we achieved acceptable accuracy from K-NN classification algorithm in detection of brain tumor. More >

  • Open Access

    ARTICLE

    Effects of the Axial Variations of Porosity and Mineralization on the Elastic Properties of the Human Femoral Neck

    V. Sansalone1,∗, V. Bousson2, S. Naili1, C. Bergot2, F. Peyrin3, J.D. Laredo2, G. Haïat1

    CMES-Computer Modeling in Engineering & Sciences, Vol.87, No.5, pp. 387-410, 2012, DOI:10.3970/cmes.2012.087.387

    Abstract This paper investigates the effects of the heterogeneous distribution of the Haversian Porosity (HP) and Tissue Mineral Density (TMD) on the elastic coefficients of bone in the human femoral neck. A bone specimen from the inferior femoral neck was obtained from a patient undergoing standard hemiarthroplasty. The specimen was imaged using 3-D synchrotron micro-computed tomography (voxel size of 10.13 mm), leading to the determination of the anatomical distributions of HP and TMD. These experimental data were used to estimate the elastic coefficients of the bone using a three-step homogenization model based on continuum micromechanics: (i) At the tissue scale (characteristic… More >

  • Open Access

    ARTICLE

    A Flexible Approach for the Calibration of Biplanar Radiography of the Spine on Conventional Radiological Systems

    Daniel C. Moura1, Jorge G. Barbosa1, Ana M. Reis2, João Manuel R. S. Tavares3

    CMES-Computer Modeling in Engineering & Sciences, Vol.60, No.2, pp. 115-138, 2010, DOI:10.3970/cmes.2010.060.115

    Abstract This paper presents a new method for the calibration of biplanar radiography that makes possible performing 3D reconstructions of the spine using conventional radiological systems. A novel approach is proposed in which a measuring device is used for determining focal distance and have a rough estimation of translation parameters. Using these data, 3D reconstructions of the spine with correct scale were successfully obtained without the need of calibration objects, something that was not previously achieved. For superior results, two optional steps may be executed that involve an optimisation of the geometrical parameters, followed by a scale adjustment with a very… More >

  • Open Access

    ARTICLE

    High-Fidelity Tetrahedral Mesh Generation from Medical Imaging Data for Fluid-Structure Interaction Analysis of Cerebral Aneurysms

    Yongjie Zhang1, Wenyan Wang1, Xinghua Liang1, Yuri Bazilevs2, Ming-Chen Hsu2, Trond Kvamsdal3, Reidar Brekken4, Jørgen Isaksen5

    CMES-Computer Modeling in Engineering & Sciences, Vol.42, No.2, pp. 131-150, 2009, DOI:10.3970/cmes.2009.042.131

    Abstract This paper describes a comprehensive and high-fidelity finite element meshing approach for patient-specific arterial geometries from medical imaging data, with emphasis on cerebral aneurysm configurations. The meshes contain both the blood volume and solid arterial wall, and are compatible at the fluid-solid interface. There are four main stages for this meshing method: 1) Image segmentation and geometric model construction; 2) Tetrahedral mesh generation for the fluid volume using the octree-based method; 3) Mesh quality improvement stage, in which edge-contraction, pillowing, optimization, geometric flow smoothing, and mesh cutting are applied to the fluid mesh; and 4) Mesh generation for the blood… More >

  • Open Access

    ARTICLE

    Boundary Element Method for an Inverse Problem in Magnetic Resonance Imaging Gradient Coils

    Liviu Marin1, Henry Power1, Richard W. Bowtell2, Clemente Cobos Sanchez2, Adib A. Becker1, Paul Glover2,Arthur Jones1

    CMES-Computer Modeling in Engineering & Sciences, Vol.23, No.3, pp. 149-174, 2008, DOI:10.3970/cmes.2008.023.149

    Abstract We investigate the reconstruction of a divergence-free surface current distribution from knowledge of the magnetic flux density in a prescribed region of interest in the framework of static electromagnetism. This inverse problem is motivated by the design of gradient coils for use in magnetic resonance imaging (MRI) and is formulated using its corresponding integral representation according to potential theory. A novel boundary element method (BEM) which employs linear interpolation on quadratic surfaces and also satisfies the continuity equation for the current density, i.e. a divergence-free BEM, is presented. Since the discretised BEM system is ill-posed and hence the associated least-squares… More >

  • Open Access

    ARTICLE

    Active Metamaterials for Modulation and Detection

    Sameer R. Sonkusale1, Wangren Xu1, Saroj Rout1

    CMC-Computers, Materials & Continua, Vol.39, No.3, pp. 301-315, 2014, DOI:10.3970/cmc.2014.039.301

    Abstract This paper illustrates some new concepts in the area of hybrid metamaterials, which are metamaterials that are embedded with active circuit elements such as transistors. Such transistor/metamaterial hybrids can exhibit some exotic electromagnetic properties which can be exploited for unusual and exciting functions. Two specific examples are provided. In one application, terahertz (THz) modulator based on embedding of psuedomorphic high electron mobility transistor (pHEMT) within the metamaterial resonator, all implemented monolithically in a commercial gallium arsenide (GaAs) technology is presented. In another application, a detector array based on metamaterial perfect absorber for room-temperature detection of gigahertz (GHz) radiation within each… More >

  • Open Access

    ARTICLE

    A Lie-Group Adaptive Method for Imaging a Space-Dependent Rigidity Coefficient in an Inverse Scattering Problem of Wave Propagation

    Chein-Shan Liu1

    CMC-Computers, Materials & Continua, Vol.18, No.1, pp. 1-20, 2010, DOI:10.3970/cmc.2010.018.001

    Abstract We are concerned with the reconstruction of an unknown space-dependent rigidity coefficient in a wave equation. This problem is known as one of the inverse scattering problems. Based on a two-point Lie-group equation we develop a Lie-group adaptive method (LGAM) to solve this inverse scattering problem through iterations, which possesses a special character that by using onlytwo boundary conditions and two initial conditions, as those used in the direct problem, we can effectively reconstruct the unknown rigidity function by aself-adaption between the local in time differential governing equation and the global in time algebraic Lie-group equation. The accuracy and efficiency… More >

  • Open Access

    ARTICLE

    Statistics of High Purity Nickel Microstructure From High Energy X-ray Diffraction Microscopy

    C.M. Hefferan1, S.F. Li1, J. Lind1, U. Lienert2, A.D. Rollett3, P. Wynblatt3, R.M. Suter1,3

    CMC-Computers, Materials & Continua, Vol.14, No.3, pp. 209-220, 2009, DOI:10.3970/cmc.2009.014.209

    Abstract We have measured and reconstructed via forward modeling a small volume of microstructure of high purity, well annealed nickel using high energy x-ray diffraction microscopy (HEDM). Statistical distributions characterizing grain orientations, intra-granular misorientations, and nearest neighbor grain misorientations are extracted. Results are consistent with recent electron backscatter diffraction measurements. Peaks in the grain neighbor misorientation angle distribution at 60 degrees (∑3) and 39 degrees (∑9) have resolution limited widths of ≈ 0.14 degree FWHM. The analysis demonstrates that HEDM can recover grain and grain boundary statistics comparable to OIM volume measurements; more extensive data sets will lead to full, five… More >

Displaying 161-170 on page 17 of 169. Per Page