Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (258)
  • Open Access

    ARTICLE

    CEOE-Net: Chaotic Evolution Algorithm-Based Optimized Ensemble Framework Enhanced with Dual-Attention for Alzheimer’s Diagnosis

    Huihui Yang1, Saif Ur Rehman Khan2,*, Omair Bilal2, Chao Chen1,*, Ming Zhao2

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2401-2434, 2025, DOI:10.32604/cmes.2025.072148 - 26 November 2025

    Abstract Detecting Alzheimer’s disease is essential for patient care, as an accurate diagnosis influences treatment options. Classifying dementia from non-dementia in brain MRIs is challenging due to features such as hippocampal atrophy, while manual diagnosis is susceptible to error. Optimal computer-aided diagnosis (CAD) systems are essential for improving accuracy and reducing misclassification risks. This study proposes an optimized ensemble method (CEOE-Net) that initiates with the selection of pre-trained models, including DenseNet121, ResNet50V2, and ResNet152V2 for unique feature extraction. Each selected model is enhanced with the inclusion of a channel attention (CA) block to improve the feature… More >

  • Open Access

    ARTICLE

    AI-based detection of MRI-invisible prostate cancer with nnU-Net

    Jingcheng Lyu1,2,#, Ruiyu Yue1,2,#, Boyu Yang1,2, Xuanhao Li1,2, Jian Song1,2,*

    Canadian Journal of Urology, Vol.32, No.5, pp. 445-456, 2025, DOI:10.32604/cju.2025.068853 - 30 October 2025

    Abstract Objectives: This study aimed to develop an artificial intelligence (AI)-based image recognition system using the nnU-Net adaptive neural network to assist clinicians in detecting magnetic resonance imaging (MRI)-invisible prostate cancer. The motivation stems from the diagnostic challenges, especially when MRI findings are inconclusive (Prostate Imaging Reporting and Data System [PI-RADS] score ≤ 3). Methods: We retrospectively included 150 patients who underwent systematic prostate biopsy at Beijing Friendship Hospital between January 2013 and January 2023. All were pathologically confirmed to have clinically significant prostate cancer, despite negative findings on preoperative MRI. A total of 1475 MRI… More >

  • Open Access

    ARTICLE

    AI-driven radiogenomic analysis of clear cell renal cell carcinoma: perinephric adipose tissue stranding as a key feature of the NIPAL4-associated imaging pattern

    Federico Greco1,2,*, Marco Cataldo3, Valerio D’Andrea2,4, Luca Pugliese5, Andrea Panunzio6, Alessandro Tafuri6, Bruno Beomonte Zobel2,4, Carlo Augusto Mallio2,4

    Canadian Journal of Urology, Vol.32, No.5, pp. 433-443, 2025, DOI:10.32604/cju.2025.068390 - 30 October 2025

    Abstract Background: Radiogenomics offers a non-invasive approach to correlate imaging features with tumor molecular profiles. This study aims to identify computed tomography (CT) imaging characteristics associated with positive NIPA-like domain containing 4 (NIPAL4) expression in clear cell renal cell carcinoma (ccRCC) and to develop a radiogenomic predictive model to support personalized risk stratification. Methods: A retrospective analysis was conducted on 241 ccRCC patients from The Cancer Genome Atlas (TCGA) and The Cancer Imaging Archive (TCIA) databases. Clinical, pathological, and CT features were compared between NIPAL4-positive and NIPAL4-negative groups. A penalized logistic regression model was built to… More >

  • Open Access

    ARTICLE

    Deep Architectural Classification of Dental Pathologies Using Orthopantomogram Imaging

    Arham Adnan1, Muhammad Tuaha Rizwan1, Hafiz Muhammad Attaullah1,2,*, Shakila Basheer3, Mohammad Tabrez Quasim4

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5073-5091, 2025, DOI:10.32604/cmc.2025.068797 - 23 October 2025

    Abstract Artificial intelligence (AI), particularly deep learning algorithms utilizing convolutional neural networks, plays an increasingly pivotal role in enhancing medical image examination. It demonstrates the potential for improving diagnostic accuracy within dental care. Orthopantomograms (OPGs) are essential in dentistry; however, their manual interpretation is often inconsistent and tedious. To the best of our knowledge, this is the first comprehensive application of YOLOv5m for the simultaneous detection and classification of six distinct dental pathologies using panoramic OPG images. The model was trained and refined on a custom dataset that began with 232 panoramic radiographs and was later… More >

  • Open Access

    ARTICLE

    Hybrid CNN Architecture for Hot Spot Detection in Photovoltaic Panels Using Fast R-CNN and GoogleNet

    Carlos Quiterio Gómez Muñoz1, Fausto Pedro García Márquez2,*, Jorge Bernabé Sanjuán3

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3369-3386, 2025, DOI:10.32604/cmes.2025.069225 - 30 September 2025

    Abstract Due to the continuous increase in global energy demand, photovoltaic solar energy generation and associated maintenance requirements have significantly expanded. One critical maintenance challenge in photovoltaic installations is detecting hot spots, localized overheating defects in solar cells that drastically reduce efficiency and can lead to permanent damage. Traditional methods for detecting these defects rely on manual inspections using thermal imaging, which are costly, labor-intensive, and impractical for large-scale installations. This research introduces an automated hybrid system based on two specialized convolutional neural networks deployed in a cascaded architecture. The first convolutional neural network efficiently detects More >

  • Open Access

    ARTICLE

    Modeling and Estimating Soybean Leaf Area Index and Biomass Using Machine Learning Based on Unmanned Aerial Vehicle-Captured Multispectral Images

    Sadia Alam Shammi1,2, Yanbo Huang1,*, Weiwei Xie1,2, Gary Feng1, Haile Tewolde1, Xin Zhang3, Johnie Jenkins1, Mark Shankle4

    Phyton-International Journal of Experimental Botany, Vol.94, No.9, pp. 2745-2766, 2025, DOI:10.32604/phyton.2025.068955 - 30 September 2025

    Abstract Crop leaf area index (LAI) and biomass are two major biophysical parameters to measure crop growth and health condition. Measuring LAI and biomass in field experiments is a destructive method. Therefore, we focused on the application of unmanned aerial vehicles (UAVs) in agriculture, which is a cost and labor-efficient method. Hence, UAV-captured multispectral images were applied to monitor crop growth, identify plant bio-physical conditions, and so on. In this study, we monitored soybean crops using UAV and field experiments. This experiment was conducted at the MAFES (Mississippi Agricultural and Forestry Experiment Station) Pontotoc Ridge-Flatwoods Branch… More >

  • Open Access

    REVIEW

    A Systematic Review of YOLO-Based Object Detection in Medical Imaging: Advances, Challenges, and Future Directions

    Zhenhui Cai, Kaiqing Zhou*, Zhouhua Liao

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 2255-2303, 2025, DOI:10.32604/cmc.2025.067994 - 23 September 2025

    Abstract The YOLO (You Only Look Once) series, a leading single-stage object detection framework, has gained significant prominence in medical-image analysis due to its real-time efficiency and robust performance. Recent iterations of YOLO have further enhanced its accuracy and reliability in critical clinical tasks such as tumor detection, lesion segmentation, and microscopic image analysis, thereby accelerating the development of clinical decision support systems. This paper systematically reviews advances in YOLO-based medical object detection from 2018 to 2024. It compares YOLO’s performance with other models (e.g., Faster R-CNN, RetinaNet) in medical contexts, summarizes standard evaluation metrics (e.g.,… More >

  • Open Access

    ARTICLE

    Attention U-Net for Precision Skeletal Segmentation in Chest X-Ray Imaging: Advancing Person Identification Techniques in Forensic Science

    Hazem Farah1, Akram Bennour1,*, Hama Soltani1, Mouaaz Nahas2, Rashiq Rafiq Marie3, Mohammed Al-Sarem3,4,*

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3335-3348, 2025, DOI:10.32604/cmc.2025.067226 - 23 September 2025

    Abstract This study presents an advanced method for post-mortem person identification using the segmentation of skeletal structures from chest X-ray images. The proposed approach employs the Attention U-Net architecture, enhanced with gated attention mechanisms, to refine segmentation by emphasizing spatially relevant anatomical features while suppressing irrelevant details. By isolating skeletal structures which remain stable over time compared to soft tissues, this method leverages bones as reliable biometric markers for identity verification. The model integrates custom-designed encoder and decoder blocks with attention gates, achieving high segmentation precision. To evaluate the impact of architectural choices, we conducted an… More >

  • Open Access

    REVIEW

    The Role of Artificial Intelligence in Improving Diagnostic Accuracy in Medical Imaging: A Review

    Omar Sabri1, Bassam Al-Shargabi2,*, Abdelrahman Abuarqoub2

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 2443-2486, 2025, DOI:10.32604/cmc.2025.066987 - 23 September 2025

    Abstract This review comprehensively analyzes advancements in artificial intelligence, particularly machine learning and deep learning, in medical imaging, focusing on their transformative role in enhancing diagnostic accuracy. Our in-depth analysis of 138 selected studies reveals that artificial intelligence (AI) algorithms frequently achieve diagnostic performance comparable to, and often surpassing, that of human experts, excelling in complex pattern recognition. Key findings include earlier detection of conditions like skin cancer and diabetic retinopathy, alongside radiologist-level performance for pneumonia detection on chest X-rays. These technologies profoundly transform imaging by significantly improving processes in classification, segmentation, and sequential analysis across… More >

  • Open Access

    REVIEW

    Advanced Feature Selection Techniques in Medical Imaging—A Systematic Literature Review

    Sunawar Khan1, Tehseen Mazhar1,2,*, Naila Sammar Naz1, Fahad Ahmed1, Tariq Shahzad3, Atif Ali4, Muhammad Adnan Khan5,*, Habib Hamam6,7,8,9

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 2347-2401, 2025, DOI:10.32604/cmc.2025.066932 - 23 September 2025

    Abstract Feature selection (FS) plays a crucial role in medical imaging by reducing dimensionality, improving computational efficiency, and enhancing diagnostic accuracy. Traditional FS techniques, including filter, wrapper, and embedded methods, have been widely used but often struggle with high-dimensional and heterogeneous medical imaging data. Deep learning-based FS methods, particularly Convolutional Neural Networks (CNNs) and autoencoders, have demonstrated superior performance but lack interpretability. Hybrid approaches that combine classical and deep learning techniques have emerged as a promising solution, offering improved accuracy and explainability. Furthermore, integrating multi-modal imaging data (e.g., Magnetic Resonance Imaging (MRI), Computed Tomography (CT), Positron… More >

Displaying 11-20 on page 2 of 258. Per Page