Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (15)
  • Open Access

    ARTICLE

    A Composite Loss-Based Autoencoder for Accurate and Scalable Missing Data Imputation

    Thierry Mugenzi, Cahit Perkgoz*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-21, 2026, DOI:10.32604/cmc.2025.070381 - 10 November 2025

    Abstract Missing data presents a crucial challenge in data analysis, especially in high-dimensional datasets, where missing data often leads to biased conclusions and degraded model performance. In this study, we present a novel autoencoder-based imputation framework that integrates a composite loss function to enhance robustness and precision. The proposed loss combines (i) a guided, masked mean squared error focusing on missing entries; (ii) a noise-aware regularization term to improve resilience against data corruption; and (iii) a variance penalty to encourage expressive yet stable reconstructions. We evaluate the proposed model across four missingness mechanisms, such as Missing… More >

  • Open Access

    ARTICLE

    A Novel Reduced Error Pruning Tree Forest with Time-Based Missing Data Imputation (REPTF-TMDI) for Traffic Flow Prediction

    Yunus Dogan1, Goksu Tuysuzoglu1, Elife Ozturk Kiyak2, Bita Ghasemkhani3, Kokten Ulas Birant1,4, Semih Utku1, Derya Birant1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 1677-1715, 2025, DOI:10.32604/cmes.2025.069255 - 31 August 2025

    Abstract Accurate traffic flow prediction (TFP) is vital for efficient and sustainable transportation management and the development of intelligent traffic systems. However, missing data in real-world traffic datasets poses a significant challenge to maintaining prediction precision. This study introduces REPTF-TMDI, a novel method that combines a Reduced Error Pruning Tree Forest (REPTree Forest) with a newly proposed Time-based Missing Data Imputation (TMDI) approach. The REPTree Forest, an ensemble learning approach, is tailored for time-related traffic data to enhance predictive accuracy and support the evolution of sustainable urban mobility solutions. Meanwhile, the TMDI approach exploits temporal patterns… More >

  • Open Access

    ARTICLE

    An Integrated Perception Model for Predicting and Analyzing Urban Rail Transit Emergencies Based on Unstructured Data

    Liang Mu1, Yurui Kang1, Zixu Yan1, Guangyu Zhu2,*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2495-2512, 2025, DOI:10.32604/cmc.2025.063208 - 03 July 2025

    Abstract The accurate prediction and analysis of emergencies in Urban Rail Transit Systems (URTS) are essential for the development of effective early warning and prevention mechanisms. This study presents an integrated perception model designed to predict emergencies and analyze their causes based on historical unstructured emergency data. To address issues related to data structuredness and missing values, we employed label encoding and an Elastic Net Regularization-based Generative Adversarial Interpolation Network (ER-GAIN) for data structuring and imputation. Additionally, to mitigate the impact of imbalanced data on the predictive performance of emergencies, we introduced an Adaptive Boosting Ensemble… More >

  • Open Access

    ARTICLE

    A Modified Deep Residual-Convolutional Neural Network for Accurate Imputation of Missing Data

    Firdaus Firdaus, Siti Nurmaini*, Anggun Islami, Annisa Darmawahyuni, Ade Iriani Sapitri, Muhammad Naufal Rachmatullah, Bambang Tutuko, Akhiar Wista Arum, Muhammad Irfan Karim, Yultrien Yultrien, Ramadhana Noor Salassa Wandya

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 3419-3441, 2025, DOI:10.32604/cmc.2024.055906 - 17 February 2025

    Abstract Handling missing data accurately is critical in clinical research, where data quality directly impacts decision-making and patient outcomes. While deep learning (DL) techniques for data imputation have gained attention, challenges remain, especially when dealing with diverse data types. In this study, we introduce a novel data imputation method based on a modified convolutional neural network, specifically, a Deep Residual-Convolutional Neural Network (DRes-CNN) architecture designed to handle missing values across various datasets. Our approach demonstrates substantial improvements over existing imputation techniques by leveraging residual connections and optimized convolutional layers to capture complex data patterns. We evaluated… More >

  • Open Access

    ARTICLE

    An Enhanced Integrated Method for Healthcare Data Classification with Incompleteness

    Sonia Goel1,#, Meena Tushir1, Jyoti Arora2, Tripti Sharma2, Deepali Gupta3, Ali Nauman4,#, Ghulam Muhammad5,*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3125-3145, 2024, DOI:10.32604/cmc.2024.054476 - 18 November 2024

    Abstract In numerous real-world healthcare applications, handling incomplete medical data poses significant challenges for missing value imputation and subsequent clustering or classification tasks. Traditional approaches often rely on statistical methods for imputation, which may yield suboptimal results and be computationally intensive. This paper aims to integrate imputation and clustering techniques to enhance the classification of incomplete medical data with improved accuracy. Conventional classification methods are ill-suited for incomplete medical data. To enhance efficiency without compromising accuracy, this paper introduces a novel approach that combines imputation and clustering for the classification of incomplete data. Initially, the linear More >

  • Open Access

    ARTICLE

    Missing Value Imputation for Radar-Derived Time-Series Tracks of Aerial Targets Based on Improved Self-Attention-Based Network

    Zihao Song, Yan Zhou*, Wei Cheng, Futai Liang, Chenhao Zhang

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3349-3376, 2024, DOI:10.32604/cmc.2024.047034 - 26 March 2024

    Abstract The frequent missing values in radar-derived time-series tracks of aerial targets (RTT-AT) lead to significant challenges in subsequent data-driven tasks. However, the majority of imputation research focuses on random missing (RM) that differs significantly from common missing patterns of RTT-AT. The method for solving the RM may experience performance degradation or failure when applied to RTT-AT imputation. Conventional autoregressive deep learning methods are prone to error accumulation and long-term dependency loss. In this paper, a non-autoregressive imputation model that addresses the issue of missing value imputation for two common missing patterns in RTT-AT is proposed.… More >

  • Open Access

    ARTICLE

    A Work Review on Clinical Laboratory Data Utilizing Machine Learning Use-Case Methodology

    Uma Ramasamy*, Sundar Santhoshkumar

    Journal of Intelligent Medicine and Healthcare, Vol.2, pp. 1-14, 2024, DOI:10.32604/jimh.2023.046995 - 10 January 2024

    Abstract More than 140 autoimmune diseases have distinct autoantibodies and symptoms, and it makes it challenging to construct an appropriate model using Machine Learning (ML) for autoimmune disease. Arthritis-related autoimmunity requires special attention. Although many conventional biomarkers for arthritis have been established, more biomarkers of arthritis autoimmune diseases remain to be identified. This review focuses on the research conducted using data obtained from clinical laboratory testing of real-time arthritis patients. The collected data is labelled the Arthritis Profile Data (APD) dataset. The APD dataset is the retrospective data with many missing values. We undertook a comprehensive… More >

  • Open Access

    ARTICLE

    Missing Value Imputation Model Based on Adversarial Autoencoder Using Spatiotemporal Feature Extraction

    Dong-Hoon Shin1, Seo-El Lee2, Byeong-Uk Jeon1, Kyungyong Chung3,*

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1925-1940, 2023, DOI:10.32604/iasc.2023.039317 - 21 June 2023

    Abstract Recently, the importance of data analysis has increased significantly due to the rapid data increase. In particular, vehicle communication data, considered a significant challenge in Intelligent Transportation Systems (ITS), has spatiotemporal characteristics and many missing values. High missing values in data lead to the decreased predictive performance of models. Existing missing value imputation models ignore the topology of transportation networks due to the structural connection of road networks, although physical distances are close in spatiotemporal image data. Additionally, the learning process of missing value imputation models requires complete data, but there are limitations in securing More >

  • Open Access

    REVIEW

    A broad overview of genotype imputation: Standard guidelines, approaches, and future investigations in genomic association studies

    MIRKO TRECCANI*, ELENA LOCATELLI, CRISTINA PATUZZO, GIOVANNI MALERBA*

    BIOCELL, Vol.47, No.6, pp. 1225-1241, 2023, DOI:10.32604/biocell.2023.027884 - 19 May 2023

    Abstract The advent of genomic big data and the statistical need for reaching significant results have led genome-wide association studies to be ravenous of a huge number of genetic markers scattered along the whole genome. Since its very beginning, the so-called genotype imputation served this purpose; this statistical and inferential procedure based on a known reference panel opened the theoretical possibility to extend association analyses to a greater number of polymorphic sites which have not been previously assayed by the used technology. In this review, we present a broad overview of the genotype imputation process, showing More >

  • Open Access

    ARTICLE

    Towards Improving Predictive Statistical Learning Model Accuracy by Enhancing Learning Technique

    Ali Algarni1, Mahmoud Ragab2,3,4,*, Wardah Alamri5, Samih M. Mostafa6

    Computer Systems Science and Engineering, Vol.42, No.1, pp. 303-318, 2022, DOI:10.32604/csse.2022.022152 - 02 December 2021

    Abstract The accuracy of the statistical learning model depends on the learning technique used which in turn depends on the dataset’s values. In most research studies, the existence of missing values (MVs) is a vital problem. In addition, any dataset with MVs cannot be used for further analysis or with any data driven tool especially when the percentage of MVs are high. In this paper, the authors propose a novel algorithm for dealing with MVs depending on the feature selection (FS) of similarity classifier with fuzzy entropy measure. The proposed algorithm imputes MVs in cumulative order.… More >

Displaying 1-10 on page 1 of 15. Per Page