Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (15)
  • Open Access

    REVIEW

    A Comprehensive Survey of Deep Learning for Authentication in Vehicular Communication

    Tarak Nandy1,*, Sananda Bhattacharyya2

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 181-219, 2025, DOI:10.32604/cmc.2025.066306 - 29 August 2025

    Abstract In the rapidly evolving landscape of intelligent transportation systems, the security and authenticity of vehicular communication have emerged as critical challenges. As vehicles become increasingly interconnected, the need for robust authentication mechanisms to safeguard against cyber threats and ensure trust in an autonomous ecosystem becomes essential. On the other hand, using intelligence in the authentication system is a significant attraction. While existing surveys broadly address vehicular security, a critical gap remains in the systematic exploration of Deep Learning (DL)-based authentication methods tailored to these communication paradigms. This survey fills that gap by offering a comprehensive… More >

  • Open Access

    ARTICLE

    Attention-Augmented YOLOv8 with Ghost Convolution for Real-Time Vehicle Detection in Intelligent Transportation Systems

    Syed Sajid Ullah1,*, Muhammad Zunair Zamir2, Ahsan Ishfaq2, Salman Khan1

    Journal on Artificial Intelligence, Vol.7, pp. 255-274, 2025, DOI:10.32604/jai.2025.069008 - 29 August 2025

    Abstract Accurate vehicle detection is essential for autonomous driving, traffic monitoring, and intelligent transportation systems. This paper presents an enhanced YOLOv8n model that incorporates the Ghost Module, Convolutional Block Attention Module (CBAM), and Deformable Convolutional Networks v2 (DCNv2). The Ghost Module streamlines feature generation to reduce redundancy, CBAM applies channel and spatial attention to improve feature focus, and DCNv2 enables adaptability to geometric variations in vehicle shapes. These components work together to improve both accuracy and computational efficiency. Evaluated on the KITTI dataset, the proposed model achieves 95.4% mAP@0.5—an 8.97% gain over standard YOLOv8n—along with 96.2% More >

  • Open Access

    ARTICLE

    Enhancing ITS Reliability and Efficiency through Optimal VANET Clustering Using Grasshopper Optimization Algorithm

    Seongsoo Cho1, Yeonwoo Lee2,*, Cheolhee Yoon3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3769-3793, 2025, DOI:10.32604/cmes.2025.066298 - 30 June 2025

    Abstract As vehicular networks grow increasingly complex due to high node mobility and dynamic traffic conditions, efficient clustering mechanisms are vital to ensure stable and scalable communication. Recent studies have emphasized the need for adaptive clustering strategies to improve performance in Intelligent Transportation Systems (ITS). This paper presents the Grasshopper Optimization Algorithm for Vehicular Network Clustering (GOA-VNET) algorithm, an innovative approach to optimal vehicular clustering in Vehicular Ad-Hoc Networks (VANETs), leveraging the Grasshopper Optimization Algorithm (GOA) to address the critical challenges of traffic congestion and communication inefficiencies in Intelligent Transportation Systems (ITS). The proposed GOA-VNET employs an… More >

  • Open Access

    REVIEW

    A Review of Object Detection Techniques in IoT-Based Intelligent Transportation Systems

    Jiaqi Wang, Jian Su*

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 125-152, 2025, DOI:10.32604/cmc.2025.064309 - 09 June 2025

    Abstract The Intelligent Transportation System (ITS), as a vital means to alleviate traffic congestion and reduce traffic accidents, demonstrates immense potential in improving traffic safety and efficiency through the integration of Internet of Things (IoT) technologies. The enhancement of its performance largely depends on breakthrough advancements in object detection technology. However, current object detection technology still faces numerous challenges, such as accuracy, robustness, and data privacy issues. These challenges are particularly critical in the application of ITS and require in-depth analysis and exploration of future improvement directions. This study provides a comprehensive review of the development… More >

  • Open Access

    ARTICLE

    Optimized Convolutional Neural Networks with Multi-Scale Pyramid Feature Integration for Efficient Traffic Light Detection in Intelligent Transportation Systems

    Yahia Said1,2,*, Yahya Alassaf3, Refka Ghodhbani4, Taoufik Saidani4, Olfa Ben Rhaiem5

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 3005-3018, 2025, DOI:10.32604/cmc.2025.060928 - 17 February 2025

    Abstract Transportation systems are experiencing a significant transformation due to the integration of advanced technologies, including artificial intelligence and machine learning. In the context of intelligent transportation systems (ITS) and Advanced Driver Assistance Systems (ADAS), the development of efficient and reliable traffic light detection mechanisms is crucial for enhancing road safety and traffic management. This paper presents an optimized convolutional neural network (CNN) framework designed to detect traffic lights in real-time within complex urban environments. Leveraging multi-scale pyramid feature maps, the proposed model addresses key challenges such as the detection of small, occluded, and low-resolution traffic… More >

  • Open Access

    ARTICLE

    Context-Aware Feature Extraction Network for High-Precision UAV-Based Vehicle Detection in Urban Environments

    Yahia Said1,*, Yahya Alassaf2, Taoufik Saidani3, Refka Ghodhbani3, Olfa Ben Rhaiem4, Ali Ahmad Alalawi1

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4349-4370, 2024, DOI:10.32604/cmc.2024.058903 - 19 December 2024

    Abstract The integration of Unmanned Aerial Vehicles (UAVs) into Intelligent Transportation Systems (ITS) holds transformative potential for real-time traffic monitoring, a critical component of emerging smart city infrastructure. UAVs offer unique advantages over stationary traffic cameras, including greater flexibility in monitoring large and dynamic urban areas. However, detecting small, densely packed vehicles in UAV imagery remains a significant challenge due to occlusion, variations in lighting, and the complexity of urban landscapes. Conventional models often struggle with these issues, leading to inaccurate detections and reduced performance in practical applications. To address these challenges, this paper introduces CFEMNet,… More >

  • Open Access

    ARTICLE

    A Nonlinear Spatiotemporal Optimization Method of Hypergraph Convolution Networks for Traffic Prediction

    Difeng Zhu1, Zhimou Zhu2, Xuan Gong1, Demao Ye1, Chao Li3,*, Jingjing Chen4,*

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 3083-3100, 2023, DOI:10.32604/iasc.2023.040517 - 11 September 2023

    Abstract Traffic prediction is a necessary function in intelligent transportation systems to alleviate traffic congestion. Graph learning methods mainly focus on the spatiotemporal dimension, but ignore the nonlinear movement of traffic prediction and the high-order relationships among various kinds of road segments. There exist two issues: 1) deep integration of the spatiotemporal information and 2) global spatial dependencies for structural properties. To address these issues, we propose a nonlinear spatiotemporal optimization method, which introduces hypergraph convolution networks (HGCN). The method utilizes the higher-order spatial features of the road network captured by HGCN, and dynamically integrates them More >

  • Open Access

    ARTICLE

    Parameter Tuned Deep Learning Based Traffic Critical Prediction Model on Remote Sensing Imaging

    Sarkar Hasan Ahmed1, Adel Al-Zebari2, Rizgar R. Zebari3, Subhi R. M. Zeebaree4,*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3993-4008, 2023, DOI:10.32604/cmc.2023.037464 - 31 March 2023

    Abstract Remote sensing (RS) presents laser scanning measurements, aerial photos, and high-resolution satellite images, which are utilized for extracting a range of traffic-related and road-related features. RS has a weakness, such as traffic fluctuations on small time scales that could distort the accuracy of predicted road and traffic features. This article introduces an Optimal Deep Learning for Traffic Critical Prediction Model on High-Resolution Remote Sensing Images (ODLTCP-HRRSI) to resolve these issues. The presented ODLTCP-HRRSI technique majorly aims to forecast the critical traffic in smart cities. To attain this, the presented ODLTCP-HRRSI model performs two major processes. More >

  • Open Access

    ARTICLE

    Optimal Routing with Spatial-Temporal Dependencies for Traffic Flow Control in Intelligent Transportation Systems

    R. B. Sarooraj*, S. Prayla Shyry

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 2071-2084, 2023, DOI:10.32604/iasc.2023.034716 - 05 January 2023

    Abstract In Intelligent Transportation Systems (ITS), controlling the traffic flow of a region in a city is the major challenge. Particularly, allocation of the traffic-free route to the taxi drivers during peak hours is one of the challenges to control the traffic flow. So, in this paper, the route between the taxi driver and pickup location or hotspot with the spatial-temporal dependencies is optimized. Initially, the hotspots in a region are clustered using the density-based spatial clustering of applications with noise (DBSCAN) algorithm to find the hot spots at the peak hours in an urban area.… More >

  • Open Access

    ARTICLE

    Hybrid Deep Learning Enabled Air Pollution Monitoring in ITS Environment

    Ashit Kumar Dutta1, Jenyfal Sampson2, Sultan Ahmad3, T. Avudaiappan4, Kanagaraj Narayanasamy5,*, Irina V. Pustokhina6, Denis A. Pustokhin7

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 1157-1172, 2022, DOI:10.32604/cmc.2022.024109 - 24 February 2022

    Abstract Intelligent Transportation Systems (ITS) have become a vital part in improving human lives and modern economy. It aims at enhancing road safety and environmental quality. There is a tremendous increase observed in the number of vehicles in recent years, owing to increasing population. Each vehicle has its own individual emission rate; however, the issue arises when the emission rate crosses a standard value. Owing to the technological advances made in Artificial Intelligence (AI) techniques, it is easy to leverage it to develop prediction approaches so as to monitor and control air pollution. The current research… More >

Displaying 1-10 on page 1 of 15. Per Page