Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (575)
  • Open Access

    ARTICLE

    A Federated Learning Framework with Blockchain-Based Auditable Participant Selection

    Huang Zeng, Mingtian Zhang, Tengfei Liu, Anjia Yang*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 5125-5142, 2024, DOI:10.32604/cmc.2024.052846 - 20 June 2024

    Abstract Federated learning is an important distributed model training technique in Internet of Things (IoT), in which participant selection is a key component that plays a role in improving training efficiency and model accuracy. This module enables a central server to select a subset of participants to perform model training based on data and device information. By doing so, selected participants are rewarded and actively perform model training, while participants that are detrimental to training efficiency and model accuracy are excluded. However, in practice, participants may suspect that the central server may have miscalculated and thus… More >

  • Open Access

    ARTICLE

    A Data Intrusion Tolerance Model Based on an Improved Evolutionary Game Theory for the Energy Internet

    Song Deng1,*, Yiming Yuan2

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3679-3697, 2024, DOI:10.32604/cmc.2024.052008 - 20 June 2024

    Abstract Malicious attacks against data are unavoidable in the interconnected, open and shared Energy Internet (EI), Intrusion tolerant techniques are critical to the data security of EI. Existing intrusion tolerant techniques suffered from problems such as low adaptability, policy lag, and difficulty in determining the degree of tolerance. To address these issues, we propose a novel adaptive intrusion tolerance model based on game theory that enjoys two-fold ideas: 1) it constructs an improved replica of the intrusion tolerance model of the dynamic equation evolution game to induce incentive weights; and 2) it combines a tournament competition More >

  • Open Access

    ARTICLE

    Abnormal Traffic Detection for Internet of Things Based on an Improved Residual Network

    Tingting Su1, Jia Wang1,*, Wei Hu2,*, Gaoqiang Dong1, Jeon Gwanggil3

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4433-4448, 2024, DOI:10.32604/cmc.2024.051535 - 20 June 2024

    Abstract Along with the progression of Internet of Things (IoT) technology, network terminals are becoming continuously more intelligent. IoT has been widely applied in various scenarios, including urban infrastructure, transportation, industry, personal life, and other socio-economic fields. The introduction of deep learning has brought new security challenges, like an increment in abnormal traffic, which threatens network security. Insufficient feature extraction leads to less accurate classification results. In abnormal traffic detection, the data of network traffic is high-dimensional and complex. This data not only increases the computational burden of model training but also makes information extraction more… More >

  • Open Access

    ARTICLE

    Vector Dominance with Threshold Searchable Encryption (VDTSE) for the Internet of Things

    Jingjing Nie1,*, Zhenhua Chen2

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4763-4779, 2024, DOI:10.32604/cmc.2024.051181 - 20 June 2024

    Abstract The Internet of Medical Things (IoMT) is an application of the Internet of Things (IoT) in the medical field. It is a cutting-edge technique that connects medical sensors and their applications to healthcare systems, which is essential in smart healthcare. However, Personal Health Records (PHRs) are normally kept in public cloud servers controlled by IoMT service providers, so privacy and security incidents may be frequent. Fortunately, Searchable Encryption (SE), which can be used to execute queries on encrypted data, can address the issue above. Nevertheless, most existing SE schemes cannot solve the vector dominance threshold… More >

  • Open Access

    ARTICLE

    Exploring Multi-Task Learning for Forecasting Energy-Cost Resource Allocation in IoT-Cloud Systems

    Mohammad Aldossary1,*, Hatem A. Alharbi2, Nasir Ayub3

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4603-4620, 2024, DOI:10.32604/cmc.2024.050862 - 20 June 2024

    Abstract Cloud computing has become increasingly popular due to its capacity to perform computations without relying on physical infrastructure, thereby revolutionizing computer processes. However, the rising energy consumption in cloud centers poses a significant challenge, especially with the escalating energy costs. This paper tackles this issue by introducing efficient solutions for data placement and node management, with a clear emphasis on the crucial role of the Internet of Things (IoT) throughout the research process. The IoT assumes a pivotal role in this study by actively collecting real-time data from various sensors strategically positioned in and around… More >

  • Open Access

    ARTICLE

    Suboptimal Feature Selection Techniques for Effective Malicious Traffic Detection on Lightweight Devices

    So-Eun Jeon1, Ye-Sol Oh1, Yeon-Ji Lee1, Il-Gu Lee1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1669-1687, 2024, DOI:10.32604/cmes.2024.047239 - 20 May 2024

    Abstract With the advancement of wireless network technology, vast amounts of traffic have been generated, and malicious traffic attacks that threaten the network environment are becoming increasingly sophisticated. While signature-based detection methods, static analysis, and dynamic analysis techniques have been previously explored for malicious traffic detection, they have limitations in identifying diversified malware traffic patterns. Recent research has been focused on the application of machine learning to detect these patterns. However, applying machine learning to lightweight devices like IoT devices is challenging because of the high computational demands and complexity involved in the learning process. In… More >

  • Open Access

    REVIEW

    A Review of Hybrid Cyber Threats Modelling and Detection Using Artificial Intelligence in IIoT

    Yifan Liu1, Shancang Li1,*, Xinheng Wang2, Li Xu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1233-1261, 2024, DOI:10.32604/cmes.2024.046473 - 20 May 2024

    Abstract The Industrial Internet of Things (IIoT) has brought numerous benefits, such as improved efficiency, smart analytics, and increased automation. However, it also exposes connected devices, users, applications, and data generated to cyber security threats that need to be addressed. This work investigates hybrid cyber threats (HCTs), which are now working on an entirely new level with the increasingly adopted IIoT. This work focuses on emerging methods to model, detect, and defend against hybrid cyber attacks using machine learning (ML) techniques. Specifically, a novel ML-based HCT modelling and analysis framework was proposed, in which regularisation and Random Forest were More >

  • Open Access

    ARTICLE

    A Hybrid Machine Learning Framework for Security Intrusion Detection

    Fatimah Mudhhi Alanazi*, Bothina Abdelmeneem Elsobky, Shaimaa Aly Elmorsy

    Computer Systems Science and Engineering, Vol.48, No.3, pp. 835-851, 2024, DOI:10.32604/csse.2024.042401 - 20 May 2024

    Abstract Proliferation of technology, coupled with networking growth, has catapulted cybersecurity to the forefront of modern security concerns. In this landscape, the precise detection of cyberattacks and anomalies within networks is crucial, necessitating the development of efficient intrusion detection systems (IDS). This article introduces a framework utilizing the fusion of fuzzy sets with support vector machines (SVM), named FSVM. The core strategy of FSVM lies in calculating the significance of network features to determine their relative importance. Features with minimal significance are prudently disregarded, a method akin to feature selection. This process not only curtails the… More >

  • Open Access

    ARTICLE

    Digital Text Document Watermarking Based Tampering Attack Detection via Internet

    Manal Abdullah Alohali1, Muna Elsadig1, Fahd N. Al-Wesabi2, Mesfer Al Duhayyim3, Anwer Mustafa Hilal4,*, Abdelwahed Motwakel4

    Computer Systems Science and Engineering, Vol.48, No.3, pp. 759-771, 2024, DOI:10.32604/csse.2023.037305 - 20 May 2024

    Abstract Owing to the rapid increase in the interchange of text information through internet networks, the reliability and security of digital content are becoming a major research problem. Tampering detection, Content authentication, and integrity verification of digital content interchanged through the Internet were utilized to solve a major concern in information and communication technologies. The authors’ difficulties were tampering detection, authentication, and integrity verification of the digital contents. This study develops an Automated Data Mining based Digital Text Document Watermarking for Tampering Attack Detection (ADMDTW-TAD) via the Internet. The DM concept is exploited in the presented… More >

  • Open Access

    ARTICLE

    Machine Learning Empowered Security and Privacy Architecture for IoT Networks with the Integration of Blockchain

    Sohaib Latif1,*, M. Saad Bin Ilyas1, Azhar Imran2, Hamad Ali Abosaq3, Abdulaziz Alzubaidi4, Vincent Karovič Jr.5

    Intelligent Automation & Soft Computing, Vol.39, No.2, pp. 353-379, 2024, DOI:10.32604/iasc.2024.047080 - 21 May 2024

    Abstract The Internet of Things (IoT) is growing rapidly and impacting almost every aspect of our lives, from wearables and healthcare to security, traffic management, and fleet management systems. This has generated massive volumes of data and security, and data privacy risks are increasing with the advancement of technology and network connections. Traditional access control solutions are inadequate for establishing access control in IoT systems to provide data protection owing to their vulnerability to single-point OF failure. Additionally, conventional privacy preservation methods have high latency costs and overhead for resource-constrained devices. Previous machine learning approaches were… More >

Displaying 31-40 on page 4 of 575. Per Page