Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (633)
  • Open Access

    ARTICLE

    Energy-Efficient Internet of Things-Based Wireless Sensor Network for Autonomous Data Validation for Environmental Monitoring

    Tabassum Kanwal1, Saif Ur Rehman1,*, Azhar Imran2, Haitham A. Mahmoud3

    Computer Systems Science and Engineering, Vol.49, pp. 185-212, 2025, DOI:10.32604/csse.2024.056535 - 10 January 2025

    Abstract This study presents an energy-efficient Internet of Things (IoT)-based wireless sensor network (WSN) framework for autonomous data validation in remote environmental monitoring. We address two critical challenges in WSNs: ensuring data reliability and optimizing energy consumption. Our novel approach integrates an artificial neural network (ANN)-based multi-fault detection algorithm with an energy-efficient IoT-WSN architecture. The proposed ANN model is designed to simultaneously detect multiple fault types, including spike faults, stuck-at faults, outliers, and out-of-range faults. We collected sensor data at 5-minute intervals over three months, using temperature and humidity sensors. The ANN was trained on 70%… More >

  • Open Access

    ARTICLE

    5DGWO-GAN: A Novel Five-Dimensional Gray Wolf Optimizer for Generative Adversarial Network-Enabled Intrusion Detection in IoT Systems

    Sarvenaz Sadat Khatami1, Mehrdad Shoeibi2, Anita Ershadi Oskouei3, Diego Martín4,*, Maral Keramat Dashliboroun5

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 881-911, 2025, DOI:10.32604/cmc.2024.059999 - 03 January 2025

    Abstract The Internet of Things (IoT) is integral to modern infrastructure, enabling connectivity among a wide range of devices from home automation to industrial control systems. With the exponential increase in data generated by these interconnected devices, robust anomaly detection mechanisms are essential. Anomaly detection in this dynamic environment necessitates methods that can accurately distinguish between normal and anomalous behavior by learning intricate patterns. This paper presents a novel approach utilizing generative adversarial networks (GANs) for anomaly detection in IoT systems. However, optimizing GANs involves tuning hyper-parameters such as learning rate, batch size, and optimization algorithms,… More >

  • Open Access

    ARTICLE

    A Support Vector Machine (SVM) Model for Privacy Recommending Data Processing Model (PRDPM) in Internet of Vehicles

    Ali Alqarni*

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 389-406, 2025, DOI:10.32604/cmc.2024.059238 - 03 January 2025

    Abstract Open networks and heterogeneous services in the Internet of Vehicles (IoV) can lead to security and privacy challenges. One key requirement for such systems is the preservation of user privacy, ensuring a seamless experience in driving, navigation, and communication. These privacy needs are influenced by various factors, such as data collected at different intervals, trip durations, and user interactions. To address this, the paper proposes a Support Vector Machine (SVM) model designed to process large amounts of aggregated data and recommend privacy-preserving measures. The model analyzes data based on user demands and interactions with service More >

  • Open Access

    REVIEW

    The Internet of Things under Federated Learning: A Review of the Latest Advances and Applications

    Jinlong Wang1,2,*, Zhenyu Liu1, Xingtao Yang1, Min Li1, Zhihan Lyu3

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 1-39, 2025, DOI:10.32604/cmc.2024.058926 - 03 January 2025

    Abstract With the rapid development of artificial intelligence, the Internet of Things (IoT) can deploy various machine learning algorithms for network and application management. In the IoT environment, many sensors and devices generate massive data, but data security and privacy protection have become a serious challenge. Federated learning (FL) can achieve many intelligent IoT applications by training models on local devices and allowing AI training on distributed IoT devices without data sharing. This review aims to deeply explore the combination of FL and the IoT, and analyze the application of federated learning in the IoT from More >

  • Open Access

    ARTICLE

    LoRa Sense: Sensing and Optimization of LoRa Link Behavior Using Path-Loss Models in Open-Cast Mines

    Bhanu Pratap Reddy Bhavanam, Prashanth Ragam*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 425-466, 2025, DOI:10.32604/cmes.2024.052355 - 17 December 2024

    Abstract The Internet of Things (IoT) has orchestrated various domains in numerous applications, contributing significantly to the growth of the smart world, even in regions with low literacy rates, boosting socio-economic development. This study provides valuable insights into optimizing wireless communication, paving the way for a more connected and productive future in the mining industry. The IoT revolution is advancing across industries, but harsh geometric environments, including open-pit mines, pose unique challenges for reliable communication. The advent of IoT in the mining industry has significantly improved communication for critical operations through the use of Radio Frequency… More >

  • Open Access

    ARTICLE

    An Asynchronous Data Transmission Policy for Task Offloading in Edge-Computing Enabled Ultra-Dense IoT

    Dayong Wang1,*, Kamalrulnizam Bin Abu Bakar1, Babangida Isyaku2, Liping Lei3

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4465-4483, 2024, DOI:10.32604/cmc.2024.059616 - 19 December 2024

    Abstract In recent years, task offloading and its scheduling optimization have emerged as widely discussed and significant topics. The multi-objective optimization problems inherent in this domain, particularly those related to resource allocation, have been extensively investigated. However, existing studies predominantly focus on matching suitable computational resources for task offloading requests, often overlooking the optimization of the task data transmission process. This inefficiency in data transmission leads to delays in the arrival of task data at computational nodes within the edge network, resulting in increased service times due to elevated network transmission latencies and idle computational resources.… More >

  • Open Access

    ARTICLE

    IoT-CDS: Internet of Things Cyberattack Detecting System Based on Deep Learning Models

    Monir Abdullah*

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4265-4283, 2024, DOI:10.32604/cmc.2024.059271 - 19 December 2024

    Abstract The rapid growth and pervasive presence of the Internet of Things (IoT) have led to an unparalleled increase in IoT devices, thereby intensifying worries over IoT security. Deep learning (DL)-based intrusion detection (ID) has emerged as a vital method for protecting IoT environments. To rectify the deficiencies of current detection methodologies, we proposed and developed an IoT cyberattacks detection system (IoT-CDS) based on DL models for detecting bot attacks in IoT networks. The DL models—long short-term memory (LSTM), gated recurrent units (GRUs), and convolutional neural network-LSTM (CNN-LSTM) were suggested to detect and classify IoT attacks.… More >

  • Open Access

    ARTICLE

    SEF: A Smart and Energy-Aware Forwarding Strategy for NDN-Based Internet of Healthcare

    Naeem Ali Askar1,*, Adib Habbal1,*, Hassen Hamouda2, Abdullah Mohammad Alnajim3, Sheroz Khan4

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4625-4658, 2024, DOI:10.32604/cmc.2024.058607 - 19 December 2024

    Abstract Named Data Networking (NDN) has emerged as a promising communication paradigm, emphasizing content-centric access rather than location-based access. This model offers several advantages for Internet of Healthcare Things (IoHT) environments, including efficient content distribution, built-in security, and natural support for mobility and scalability. However, existing NDN-based IoHT systems face inefficiencies in their forwarding strategy, where identical Interest packets are forwarded across multiple nodes, causing broadcast storms, increased collisions, higher energy consumption, and delays. These issues negatively impact healthcare system performance, particularly for individuals with disabilities and chronic diseases requiring continuous monitoring. To address these challenges,… More >

  • Open Access

    ARTICLE

    Effective Controller Placement in Software-Defined Internet-of-Things Leveraging Deep Q-Learning (DQL)

    Jehad Ali1,*, Mohammed J. F. Alenazi2

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4015-4032, 2024, DOI:10.32604/cmc.2024.058480 - 19 December 2024

    Abstract The controller is a main component in the Software-Defined Networking (SDN) framework, which plays a significant role in enabling programmability and orchestration for 5G and next-generation networks. In SDN, frequent communication occurs between network switches and the controller, which manages and directs traffic flows. If the controller is not strategically placed within the network, this communication can experience increased delays, negatively affecting network performance. Specifically, an improperly placed controller can lead to higher end-to-end (E2E) delay, as switches must traverse more hops or encounter greater propagation delays when communicating with the controller. This paper introduces… More >

  • Open Access

    REVIEW

    Recent Technology Advancements in Smart City Management: A Review

    Chiranjeevi Karri1,2,*, José J. M. Machado3, João Manuel R. S. Tavares1, Deepak Kumar Jain4, Suresh Dannana5, Santosh Kumar Gottapu6, Amir H. Gandomi7,8

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 3617-3663, 2024, DOI:10.32604/cmc.2024.058461 - 19 December 2024

    Abstract The rapid population growth, insecure lifestyle, wastage of natural resources, indiscipline behavior of human beings, urgency in the medical field, security of patient information, agricultural-related problems, and automation requirements in industries are the reasons for invention of technologies. Smart cities aim to address these challenges through the integration of technology, data, and innovative practices. Building a smart city involves integrating advanced technologies and data-driven solutions to enhance urban living, improve resource efficiency, and create sustainable environments. This review presents five of the most critical technologies for smart and/or safe cities, addressing pertinent topics such as More >

Displaying 31-40 on page 4 of 633. Per Page