Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (198)
  • Open Access

    ARTICLE

    An Industrial Intrusion Detection Method Based on Hybrid Convolutional Neural Networks with Improved TCN

    Zhihua Liu, Shengquan Liu*, Jian Zhang

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 411-433, 2024, DOI:10.32604/cmc.2023.046237

    Abstract Network intrusion detection systems (NIDS) based on deep learning have continued to make significant advances. However, the following challenges remain: on the one hand, simply applying only Temporal Convolutional Networks (TCNs) can lead to models that ignore the impact of network traffic features at different scales on the detection performance. On the other hand, some intrusion detection methods consider multi-scale information of traffic data, but considering only forward network traffic information can lead to deficiencies in capturing multi-scale temporal features. To address both of these issues, we propose a hybrid Convolutional Neural Network that supports… More >

  • Open Access

    ARTICLE

    Intrusion Detection and Prevention Model for Blockchain Based IoMT Applications

    Jameel Almalki*

    Computer Systems Science and Engineering, Vol.48, No.1, pp. 131-152, 2024, DOI:10.32604/csse.2023.038085

    Abstract The recent global pandemic has resulted in growth in the medical and healthcare sectors. Applications used in these domains have become more advanced and digitally integrated. Sensor-based Internet of Things (IoT) devices are increasing in healthcare and medical units. The emerging trend with the use of IoT devices in medical healthcare is termed as Internet of Medical Things (IoMT). The instruments used in these healthcare units comprise various sensors that can record patient body observations. These recorded observations are streamed across Internet-based channels to be stored and analyzed in centralized servers. Patient diagnostics are performed… More >

  • Open Access

    ARTICLE

    A Comparative Performance Analysis of Machine Learning Models for Intrusion Detection Classification

    Adil Hussain1, Amna Khatoon2,*, Ayesha Aslam2, Tariq1, Muhammad Asif Khosa1

    Journal of Cyber Security, Vol.6, pp. 1-23, 2024, DOI:10.32604/jcs.2023.046915

    Abstract The importance of cybersecurity in contemporary society cannot be inflated, given the substantial impact of networks on various aspects of daily life. Traditional cybersecurity measures, such as anti-virus software and firewalls, safeguard networks against potential threats. In network security, using Intrusion Detection Systems (IDSs) is vital for effectively monitoring the various software and hardware components inside a given network. However, they may encounter difficulties when it comes to detecting solitary attacks. Machine Learning (ML) models are implemented in intrusion detection widely because of the high accuracy. The present work aims to assess the performance of More >

  • Open Access

    ARTICLE

    Developing Transparent IDS for VANETs Using LIME and SHAP: An Empirical Study

    Fayaz Hassan1,*, Jianguo Yu1, Zafi Sherhan Syed2, Arif Hussain Magsi3, Nadeem Ahmed4

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3185-3208, 2023, DOI:10.32604/cmc.2023.044650

    Abstract Vehicular Ad-hoc Networks (VANETs) are mobile ad-hoc networks that use vehicles as nodes to create a wireless network. Whereas VANETs offer many advantages over traditional transportation networks, ensuring security in VANETs remains a significant challenge due to the potential for malicious attacks. This study addresses the critical issue of security in VANETs by introducing an intelligent Intrusion Detection System (IDS) that merges Machine Learning (ML)–based attack detection with Explainable AI (XAI) explanations. This study ML pipeline involves utilizing correlation-based feature selection followed by a Random Forest (RF) classifier that achieves a classification accuracy of 100%… More >

  • Open Access

    ARTICLE

    Intrusion Detection System with Customized Machine Learning Techniques for NSL-KDD Dataset

    Mohammed Zakariah1, Salman A. AlQahtani2,*, Abdulaziz M. Alawwad1, Abdullilah A. Alotaibi3

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 4025-4054, 2023, DOI:10.32604/cmc.2023.043752

    Abstract Modern networks are at risk from a variety of threats as a result of the enormous growth in internet-based traffic. By consuming time and resources, intrusive traffic hampers the efficient operation of network infrastructure. An effective strategy for preventing, detecting, and mitigating intrusion incidents will increase productivity. A crucial element of secure network traffic is Intrusion Detection System (IDS). An IDS system may be host-based or network-based to monitor intrusive network activity. Finding unusual internet traffic has become a severe security risk for intelligent devices. These systems are negatively impacted by several attacks, which are… More >

  • Open Access

    ARTICLE

    Utilizing Machine Learning with Unique Pentaplet Data Structure to Enhance Data Integrity

    Abdulwahab Alazeb*

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 2995-3014, 2023, DOI:10.32604/cmc.2023.043173

    Abstract Data protection in databases is critical for any organization, as unauthorized access or manipulation can have severe negative consequences. Intrusion detection systems are essential for keeping databases secure. Advancements in technology will lead to significant changes in the medical field, improving healthcare services through real-time information sharing. However, reliability and consistency still need to be solved. Safeguards against cyber-attacks are necessary due to the risk of unauthorized access to sensitive information and potential data corruption. Disruptions to data items can propagate throughout the database, making it crucial to reverse fraudulent transactions without delay, especially in… More >

  • Open Access

    ARTICLE

    One Dimensional Conv-BiLSTM Network with Attention Mechanism for IoT Intrusion Detection

    Bauyrzhan Omarov1,*, Zhuldyz Sailaukyzy2, Alfiya Bigaliyeva2, Adilzhan Kereyev3, Lyazat Naizabayeva4, Aigul Dautbayeva5

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3765-3781, 2023, DOI:10.32604/cmc.2023.042469

    Abstract In the face of escalating intricacy and heterogeneity within Internet of Things (IoT) network landscapes, the imperative for adept intrusion detection techniques has never been more pressing. This paper delineates a pioneering deep learning-based intrusion detection model: the One Dimensional Convolutional Neural Networks (1D-CNN) and Bidirectional Long Short-Term Memory (BiLSTM) Network (Conv-BiLSTM) augmented with an Attention Mechanism. The primary objective of this research is to engineer a sophisticated model proficient in discerning the nuanced patterns and temporal dependencies quintessential to IoT network traffic data, thereby facilitating the precise categorization of a myriad of intrusion types. Methodology:More >

  • Open Access

    ARTICLE

    An Intelligent Approach for Intrusion Detection in Industrial Control System

    Adel Alkhalil1,*, Abdulaziz Aljaloud1, Diaa Uliyan1, Mohammed Altameemi1, Magdy Abdelrhman2,3, Yaser Altameemi4, Aakash Ahmad5, Romany Fouad Mansour6

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2049-2078, 2023, DOI:10.32604/cmc.2023.044506

    Abstract Supervisory control and data acquisition (SCADA) systems are computer systems that gather and analyze real-time data, distributed control systems are specially designed automated control system that consists of geographically distributed control elements, and other smaller control systems such as programmable logic controllers are industrial solid-state computers that monitor inputs and outputs and make logic-based decisions. In recent years, there has been a lot of focus on the security of industrial control systems. Due to the advancement in information technologies, the risk of cyberattacks on industrial control system has been drastically increased. Because they are so More >

  • Open Access

    ARTICLE

    GMLP-IDS: A Novel Deep Learning-Based Intrusion Detection System for Smart Agriculture

    Abdelwahed Berguiga1,2,*, Ahlem Harchay1,2, Ayman Massaoudi1,2, Mossaad Ben Ayed3, Hafedh Belmabrouk4

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 379-402, 2023, DOI:10.32604/cmc.2023.041667

    Abstract Smart Agriculture, also known as Agricultural 5.0, is expected to be an integral part of our human lives to reduce the cost of agricultural inputs, increasing productivity and improving the quality of the final product. Indeed, the safety and ongoing maintenance of Smart Agriculture from cyber-attacks are vitally important. To provide more comprehensive protection against potential cyber-attacks, this paper proposes a new deep learning-based intrusion detection system for securing Smart Agriculture. The proposed Intrusion Detection System IDS, namely GMLP-IDS, combines the feedforward neural network Multilayer Perceptron (MLP) and the Gaussian Mixture Model (GMM) that can… More >

  • Open Access

    ARTICLE

    Modified MMS: Minimization Approach for Model Subset Selection

    C. Rajathi, P. Rukmani*

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 733-756, 2023, DOI:10.32604/cmc.2023.041507

    Abstract Considering the recent developments in the digital environment, ensuring a higher level of security for networking systems is imperative. Many security approaches are being constantly developed to protect against evolving threats. An ensemble model for the intrusion classification system yielded promising results based on the knowledge of many prior studies. This research work aimed to create a more diverse and effective ensemble model. To this end, selected six classification models, Logistic Regression (LR), Naive Bayes (NB), K-Nearest Neighbor (KNN), Decision Tree (DT), Support Vector Machine (SVM), and Random Forest (RF) from existing study to run… More >

Displaying 11-20 on page 2 of 198. Per Page