Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (190)
  • Open Access

    ARTICLE

    Intrusion Detection in 5G Cellular Network Using Machine Learning

    Ishtiaque Mahmood1, Tahir Alyas2, Sagheer Abbas3, Tariq Shahzad4, Qaiser Abbas5,6, Khmaies Ouahada7,*

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2439-2453, 2023, DOI:10.32604/csse.2023.033842

    Abstract Attacks on fully integrated servers, apps, and communication networks via the Internet of Things (IoT) are growing exponentially. Sensitive devices’ effectiveness harms end users, increases cyber threats and identity theft, raises costs, and negatively impacts income as problems brought on by the Internet of Things network go unnoticed for extended periods. Attacks on Internet of Things interfaces must be closely monitored in real time for effective safety and security. Following the 1, 2, 3, and 4G cellular networks, the 5th generation wireless 5G network is indeed the great invasion of mankind and is known as the global advancement of cellular… More >

  • Open Access

    ARTICLE

    Intelligent Intrusion Detection System for the Internet of Medical Things Based on Data-Driven Techniques

    Okba Taouali1,*, Sawcen Bacha2, Khaoula Ben Abdellafou1, Ahamed Aljuhani1, Kamel Zidi3, Rehab Alanazi1, Mohamed Faouzi Harkat4

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 1593-1609, 2023, DOI:10.32604/csse.2023.039984

    Abstract Introducing IoT devices to healthcare fields has made it possible to remotely monitor patients’ information and provide a proper diagnosis as needed, resulting in the Internet of Medical Things (IoMT). However, obtaining good security features that ensure the integrity and confidentiality of patient’s information is a significant challenge. However, due to the computational resources being limited, an edge device may struggle to handle heavy detection tasks such as complex machine learning algorithms. Therefore, designing and developing a lightweight detection mechanism is crucial. To address the aforementioned challenges, a new lightweight IDS approach is developed to effectively combat a diverse range… More >

  • Open Access

    ARTICLE

    Modified Metaheuristics with Weighted Majority Voting Ensemble Deep Learning Model for Intrusion Detection System

    Mahmoud Ragab1,2,*, Sultanah M. Alshammari2,3, Abdullah S. Al-Malaise Al-Ghamdi2,4

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2497-2512, 2023, DOI:10.32604/csse.2023.041446

    Abstract The Internet of Things (IoT) system has confronted dramatic growth in high dimensionality and data traffic. The system named intrusion detection systems (IDS) is broadly utilized for the enhancement of security posture in an IT infrastructure. An IDS is a practical and suitable method for assuring network security and identifying attacks by protecting it from intrusive hackers. Nowadays, machine learning (ML)-related techniques were used for detecting intrusion in IoTs IDSs. But, the IoT IDS mechanism faces significant challenges because of physical and functional diversity. Such IoT features use every attribute and feature for IDS self-protection unrealistic and difficult. This study… More >

  • Open Access

    ARTICLE

    An Enhanced Intelligent Intrusion Detection System to Secure E-Commerce Communication Systems

    Adil Hussain1, Kashif Naseer Qureshi2,*, Khalid Javeed3, Musaed Alhussein4

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2513-2528, 2023, DOI:10.32604/csse.2023.040305

    Abstract Information and communication technologies are spreading rapidly due to their fast proliferation in many fields. The number of Internet users has led to a spike in cyber-attack incidents. E-commerce applications, such as online banking, marketing, trading, and other online businesses, play an integral role in our lives. Network Intrusion Detection System (NIDS) is essential to protect the network from unauthorized access and against other cyber-attacks. The existing NIDS systems are based on the Backward Oracle Matching (BOM) algorithm, which minimizes the false alarm rate and causes of high packet drop ratio. This paper discussed the existing NIDS systems and different… More >

  • Open Access

    ARTICLE

    Archimedes Optimization with Deep Learning Based Aerial Image Classification for Cybersecurity Enabled UAV Networks

    Faris Kateb, Mahmoud Ragab*

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2171-2185, 2023, DOI:10.32604/csse.2023.039931

    Abstract The recent adoption of satellite technologies, unmanned aerial vehicles (UAVs) and 5G has encouraged telecom networking to evolve into more stable service to remote areas and render higher quality. But, security concerns with drones were increasing as drone nodes have been striking targets for cyberattacks because of immensely weak inbuilt and growing poor security volumes. This study presents an Archimedes Optimization with Deep Learning based Aerial Image Classification and Intrusion Detection (AODL-AICID) technique in secure UAV networks. The presented AODL-AICID technique concentrates on two major processes: image classification and intrusion detection. For aerial image classification, the AODL-AICID technique encompasses MobileNetv2… More >

  • Open Access

    ARTICLE

    Real-Time Multi Fractal Trust Evaluation Model for Efficient Intrusion Detection in Cloud

    S. Priya1, R. S. Ponmagal2,*

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1895-1907, 2023, DOI:10.32604/iasc.2023.039814

    Abstract Handling service access in a cloud environment has been identified as a critical challenge in the modern internet world due to the increased rate of intrusion attacks. To address such threats towards cloud services, numerous techniques exist that mitigate the service threats according to different metrics. The rule-based approaches are unsuitable for new threats, whereas trust-based systems estimate trust value based on behavior, flow, and other features. However, the methods suffer from mitigating intrusion attacks at a higher rate. This article presents a novel Multi Fractal Trust Evaluation Model (MFTEM) to overcome these deficiencies. The method involves analyzing service growth,… More >

  • Open Access

    ARTICLE

    Ensemble-Based Approach for Efficient Intrusion Detection in Network Traffic

    Ammar Almomani1,2,*, Iman Akour3, Ahmed M. Manasrah4,5, Omar Almomani6, Mohammad Alauthman7, Esra’a Abdullah1, Amaal Al Shwait1, Razan Al Sharaa1

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 2499-2517, 2023, DOI:10.32604/iasc.2023.039687

    Abstract The exponential growth of Internet and network usage has necessitated heightened security measures to protect against data and network breaches. Intrusions, executed through network packets, pose a significant challenge for firewalls to detect and prevent due to the similarity between legitimate and intrusion traffic. The vast network traffic volume also complicates most network monitoring systems and algorithms. Several intrusion detection methods have been proposed, with machine learning techniques regarded as promising for dealing with these incidents. This study presents an Intrusion Detection System Based on Stacking Ensemble Learning base (Random Forest, Decision Tree, and k-Nearest-Neighbors). The proposed system employs pre-processing… More >

  • Open Access

    ARTICLE

    A Novel Ensemble Learning System for Cyberattack Classification

    Óscar Mogollón-Gutiérrez*, José Carlos Sancho Núñez, Mar Ávila Vegas, Andrés Caro Lindo

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1691-1709, 2023, DOI:10.32604/iasc.2023.039255

    Abstract Nowadays, IT systems rely mainly on artificial intelligence (AI) algorithms to process data. AI is generally used to extract knowledge from stored information and, depending on the nature of data, it may be necessary to apply different AI algorithms. In this article, a novel perspective on the use of AI to ensure the cybersecurity through the study of network traffic is presented. This is done through the construction of a two-stage cyberattack classification ensemble model addressing class imbalance following a one-vs-rest (OvR) approach. With the growing trend of cyberattacks, it is essential to implement techniques that ensure legitimate access to… More >

  • Open Access

    ARTICLE

    Intrusion Detection in the Internet of Things Using Fusion of GRU-LSTM Deep Learning Model

    Mohammad S. Al-kahtani1, Zahid Mehmood2,3,*, Tariq Sadad4, Islam Zada5, Gauhar Ali6, Mohammed ElAffendi6

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 2279-2290, 2023, DOI:10.32604/iasc.2023.037673

    Abstract Cybersecurity threats are increasing rapidly as hackers use advanced techniques. As a result, cybersecurity has now a significant factor in protecting organizational limits. Intrusion detection systems (IDSs) are used in networks to flag serious issues during network management, including identifying malicious traffic, which is a challenge. It remains an open contest over how to learn features in IDS since current approaches use deep learning methods. Hybrid learning, which combines swarm intelligence and evolution, is gaining attention for further improvement against cyber threats. In this study, we employed a PSO-GA (fusion of particle swarm optimization (PSO) and genetic algorithm (GA)) for… More >

  • Open Access

    ARTICLE

    Signature-Based Intrusion Detection System in Wireless 6G IoT Networks

    Mansoor Farooq1,*, Mubashir Hassan Khan2

    Journal on Internet of Things, Vol.4, No.3, pp. 155-168, 2022, DOI:10.32604/jiot.2022.039271

    Abstract An “Intrusion Detection System” (IDS) is a security measure designed to perceive and be aware of unauthorized access or malicious activity on a computer system or network. Signature-based IDSs employ an attack signature database to identify intrusions. This indicates that the system can only identify known attacks and cannot identify brand-new or unidentified assaults. In Wireless 6G IoT networks, signature-based IDSs can be useful to detect a wide range of known attacks such as viruses, worms, and Trojans. However, these networks have specific requirements and constraints, such as the need for real-time detection and low-power operation. To meet these requirements,… More >

Displaying 21-30 on page 3 of 190. Per Page