Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (553)
  • Open Access

    ARTICLE

    Intrusion Detection System for Smart Industrial Environments with Ensemble Feature Selection and Deep Convolutional Neural Networks

    Asad Raza1,*, Shahzad Memon1, Muhammad Ali Nizamani1, Mahmood Hussain Shah2

    Intelligent Automation & Soft Computing, Vol.39, No.3, pp. 545-566, 2024, DOI:10.32604/iasc.2024.051779

    Abstract Smart Industrial environments use the Industrial Internet of Things (IIoT) for their routine operations and transform their industrial operations with intelligent and driven approaches. However, IIoT devices are vulnerable to cyber threats and exploits due to their connectivity with the internet. Traditional signature-based IDS are effective in detecting known attacks, but they are unable to detect unknown emerging attacks. Therefore, there is the need for an IDS which can learn from data and detect new threats. Ensemble Machine Learning (ML) and individual Deep Learning (DL) based IDS have been developed, and these individual models achieved… More >

  • Open Access

    ARTICLE

    Enhancing Critical Path Problem in Neutrosophic Environment Using Python

    M. Navya Pratyusha, Ranjan Kumar*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2957-2976, 2024, DOI:10.32604/cmes.2024.051581

    Abstract In the real world, one of the most common problems in project management is the unpredictability of resources and timelines. An efficient way to resolve uncertainty problems and overcome such obstacles is through an extended fuzzy approach, often known as neutrosophic logic. Our rigorous proposed model has led to the creation of an advanced technique for computing the triangular single-valued neutrosophic number. This innovative approach evaluates the inherent uncertainty in project durations of the planning phase, which enhances the potential significance of the decision-making process in the project. Our proposed method, for the first time… More >

  • Open Access

    ARTICLE

    A Novel Graph Structure Learning Based Semi-Supervised Framework for Anomaly Identification in Fluctuating IoT Environment

    Weijian Song1,, Xi Li1,, Peng Chen1,*, Juan Chen1, Jianhua Ren2, Yunni Xia3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 3001-3016, 2024, DOI:10.32604/cmes.2024.048563

    Abstract With the rapid development of Internet of Things (IoT) technology, IoT systems have been widely applied in healthcare, transportation, home, and other fields. However, with the continuous expansion of the scale and increasing complexity of IoT systems, the stability and security issues of IoT systems have become increasingly prominent. Thus, it is crucial to detect anomalies in the collected IoT time series from various sensors. Recently, deep learning models have been leveraged for IoT anomaly detection. However, owing to the challenges associated with data labeling, most IoT anomaly detection methods resort to unsupervised learning techniques.… More >

  • Open Access

    ARTICLE

    YOLO-CRD: A Lightweight Model for the Detection of Rice Diseases in Natural Environments

    Rui Zhang1,2, Tonghai Liu1,2,*, Wenzheng Liu1,2, Chaungchuang Yuan1,2, Xiaoyue Seng1,2, Tiantian Guo1,2, Xue Wang1,2

    Phyton-International Journal of Experimental Botany, Vol.93, No.6, pp. 1275-1296, 2024, DOI:10.32604/phyton.2024.052397

    Abstract Rice diseases can adversely affect both the yield and quality of rice crops, leading to the increased use of pesticides and environmental pollution. Accurate detection of rice diseases in natural environments is crucial for both operational efficiency and quality assurance. Deep learning-based disease identification technologies have shown promise in automatically discerning disease types. However, effectively extracting early disease features in natural environments remains a challenging problem. To address this issue, this study proposes the YOLO-CRD method. This research selected images of common rice diseases, primarily bakanae disease, bacterial brown spot, leaf rice fever, and dry… More >

  • Open Access

    ARTICLE

    Hybrid Approach for Cost Efficient Application Placement in Fog-Cloud Computing Environments

    Abdulelah Alwabel1,*, Chinmaya Kumar Swain2

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4127-4148, 2024, DOI:10.32604/cmc.2024.048833

    Abstract Fog computing has recently developed as a new paradigm with the aim of addressing time-sensitive applications better than with cloud computing by placing and processing tasks in close proximity to the data sources. However, the majority of the fog nodes in this environment are geographically scattered with resources that are limited in terms of capabilities compared to cloud nodes, thus making the application placement problem more complex than that in cloud computing. An approach for cost-efficient application placement in fog-cloud computing environments that combines the benefits of both fog and cloud computing to optimize the… More >

  • Open Access

    ARTICLE

    CDGSH Iron Sulfur Domain 2 Activates Proliferation and EMT of Pancreatic Cancer Cells via Wnt/β-Catenin Pathway and Has Prognostic Value in Human Pancreatic Cancer

    Yang Yang, Yuan-song Bai, Qing Wang

    Oncology Research, Vol.25, No.4, pp. 605-615, 2017, DOI:10.3727/096504016X14767450526417

    Abstract Recently, increasing evidence has shown that CDGSH iron sulfur domain 2 (CISD2) is involved in the initiation and metastasis of several cancers. However, the evidence of its potential role in pancreatic cancer is still lacking. In our present study, CISD2 was found to be increased in pancreatic cancer samples and multiple cell lines. Moreover, statistical analysis revealed that a high level of CISD2 was related to advanced clinical stage, advanced T-stage, positive vascular invasion, positive distant metastasis, and larger tumor size. In addition, multivariate analysis suggests that CISD2 was an independent prognostic factor in pancreatic… More >

  • Open Access

    ARTICLE

    PHLDA2 reshapes the immune microenvironment and induces drug resistance in hepatocellular carcinoma

    KUN FENG1,#, HAO PENG2,#, QINGPENG LV1, YEWEI ZHANG1,*

    Oncology Research, Vol.32, No.6, pp. 1063-1078, 2024, DOI:10.32604/or.2024.047078

    Abstract Hepatocellular carcinoma (HCC) is a malignancy known for its unfavorable prognosis. The dysregulation of the tumor microenvironment (TME) can affect the sensitivity to immunotherapy or chemotherapy, leading to treatment failure. The elucidation of PHLDA2’s involvement in HCC is imperative, and the clinical value of PHLDA2 is also underestimated. Here, bioinformatics analysis was performed in multiple cohorts to explore the phenotype and mechanism through which PHLDA2 may affect the progression of HCC. Then, the expression and function of PHLDA2 were examined via the qRT-PCR, Western Blot, and MTT assays. Our findings indicate a substantial upregulation of… More >

  • Open Access

    ARTICLE

    Improving Channel Estimation in a NOMA Modulation Environment Based on Ensemble Learning

    Lassaad K. Smirani1, Leila Jamel2,*, Latifah Almuqren2

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1315-1337, 2024, DOI:10.32604/cmes.2024.047551

    Abstract This study presents a layered generalization ensemble model for next generation radio mobiles, focusing on supervised channel estimation approaches. Channel estimation typically involves the insertion of pilot symbols with a well-balanced rhythm and suitable layout. The model, called Stacked Generalization for Channel Estimation (SGCE), aims to enhance channel estimation performance by eliminating pilot insertion and improving throughput. The SGCE model incorporates six machine learning methods: random forest (RF), gradient boosting machine (GB), light gradient boosting machine (LGBM), support vector regression (SVR), extremely randomized tree (ERT), and extreme gradient boosting (XGB). By generating meta-data from five… More >

  • Open Access

    ARTICLE

    Optimizing Sustainability: Exergoenvironmental Analysis of a Multi-Effect Distillation with Thermal Vapor Compression System for Seawater Desalination

    Zineb Fergani1, Zakaria Triki1, Rabah Menasri1, Hichem Tahraoui1,2,*, Meriem Zamouche3, Mohammed Kebir4, Jie Zhang5, Abdeltif Amrane6,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.2, pp. 455-473, 2024, DOI:10.32604/fhmt.2024.050332

    Abstract Seawater desalination stands as an increasingly indispensable solution to address global water scarcity issues. This study conducts a thorough exergoenvironmental analysis of a multi-effect distillation with thermal vapor compression (MED-TVC) system, a highly promising desalination technology. The MED-TVC system presents an energy-efficient approach to desalination by harnessing waste heat sources and incorporating thermal vapor compression. The primary objective of this research is to assess the system’s thermodynamic efficiency and environmental impact, considering both energy and exergy aspects. The investigation delves into the intricacies of energy and exergy losses within the MED-TVC process, providing a holistic… More >

  • Open Access

    ARTICLE

    A Novel Scheduling Framework for Multi-Programming Quantum Computing in Cloud Environment

    Danyang Zheng, Jinchen Xv, Feng Yue, Qiming Du, Zhiheng Wang, Zheng Shan*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 1957-1974, 2024, DOI:10.32604/cmc.2024.048956

    Abstract As cloud quantum computing gains broader acceptance, a growing quantity of researchers are directing their focus towards this domain. Nevertheless, the rapid surge in demand for cloud-based quantum computing resources has led to a scarcity, which in turn hampers users from achieving optimal satisfaction. Therefore, cloud quantum computing service providers require a unified analysis and scheduling framework for their quantum resources and user jobs to meet the ever-growing usage demands. This paper introduces a new multi-programming scheduling framework for quantum computing in a cloud environment. The framework addresses the issue of limited quantum computing resources More >

Displaying 11-20 on page 2 of 553. Per Page