Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (107)
  • Open Access

    ARTICLE

    A Lightweight Network with Dual Encoder and Cross Feature Fusion for Cement Pavement Crack Detection

    Zhong Qu1,*, Guoqing Mu1, Bin Yuan2

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 255-273, 2024, DOI:10.32604/cmes.2024.048175

    Abstract Automatic crack detection of cement pavement chiefly benefits from the rapid development of deep learning, with convolutional neural networks (CNN) playing an important role in this field. However, as the performance of crack detection in cement pavement improves, the depth and width of the network structure are significantly increased, which necessitates more computing power and storage space. This limitation hampers the practical implementation of crack detection models on various platforms, particularly portable devices like small mobile devices. To solve these problems, we propose a dual-encoder-based network architecture that focuses on extracting more comprehensive fracture feature information and combines cross-fusion modules… More > Graphic Abstract

    A Lightweight Network with Dual Encoder and Cross Feature Fusion for Cement Pavement Crack Detection

  • Open Access

    ARTICLE

    Prediction of Bandwidth of Metamaterial Antenna Using Pearson Kernel-Based Techniques

    Sherly Alphonse1,*, S. Abinaya1, Sourabh Paul2

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3449-3467, 2024, DOI:10.32604/cmc.2024.046403

    Abstract The use of metamaterial enhances the performance of a specific class of antennas known as metamaterial antennas. The radiation cost and quality factor of the antenna are influenced by the size of the antenna. Metamaterial antennas allow for the circumvention of the bandwidth restriction for small antennas. Antenna parameters have recently been predicted using machine learning algorithms in existing literature. Machine learning can take the place of the manual process of experimenting to find the ideal simulated antenna parameters. The accuracy of the prediction will be primarily dependent on the model that is used. In this paper, a novel method… More >

  • Open Access

    ARTICLE

    CL2ES-KDBC: A Novel Covariance Embedded Selection Based on Kernel Distributed Bayes Classifier for Detection of Cyber-Attacks in IoT Systems

    Talal Albalawi, P. Ganeshkumar*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3511-3528, 2024, DOI:10.32604/cmc.2024.046396

    Abstract The Internet of Things (IoT) is a growing technology that allows the sharing of data with other devices across wireless networks. Specifically, IoT systems are vulnerable to cyberattacks due to its opennes The proposed work intends to implement a new security framework for detecting the most specific and harmful intrusions in IoT networks. In this framework, a Covariance Linear Learning Embedding Selection (CL2ES) methodology is used at first to extract the features highly associated with the IoT intrusions. Then, the Kernel Distributed Bayes Classifier (KDBC) is created to forecast attacks based on the probability distribution value precisely. In addition, a… More >

  • Open Access

    ARTICLE

    Novel Investigation of Stochastic Fractional Differential Equations Measles Model via the White Noise and Global Derivative Operator Depending on Mittag-Leffler Kernel

    Saima Rashid1,2,*, Fahd Jarad3,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2289-2327, 2024, DOI:10.32604/cmes.2023.028773

    Abstract Because of the features involved with their varied kernels, differential operators relying on convolution formulations have been acknowledged as effective mathematical resources for modeling real-world issues. In this paper, we constructed a stochastic fractional framework of measles spreading mechanisms with dual medication immunization considering the exponential decay and Mittag-Leffler kernels. In this approach, the overall population was separated into five cohorts. Furthermore, the descriptive behavior of the system was investigated, including prerequisites for the positivity of solutions, invariant domain of the solution, presence and stability of equilibrium points, and sensitivity analysis. We included a stochastic element in every cohort and… More >

  • Open Access

    ARTICLE

    Enhancing Multicriteria-Based Recommendations by Alleviating Scalability and Sparsity Issues Using Collaborative Denoising Autoencoder

    S. Abinaya*, K. Uttej Kumar

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2269-2286, 2024, DOI:10.32604/cmc.2024.047167

    Abstract A Recommender System (RS) is a crucial part of several firms, particularly those involved in e-commerce. In conventional RS, a user may only offer a single rating for an item-that is insufficient to perceive consumer preferences. Nowadays, businesses in industries like e-learning and tourism enable customers to rate a product using a variety of factors to comprehend customers’ preferences. On the other hand, the collaborative filtering (CF) algorithm utilizing AutoEncoder (AE) is seen to be effective in identifying user-interested items. However, the cost of these computations increases nonlinearly as the number of items and users increases. To triumph over the… More >

  • Open Access

    ARTICLE

    An Efficient Local Radial Basis Function Method for Image Segmentation Based on the Chan–Vese Model

    Shupeng Qiu, Chujin Lin, Wei Zhao*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 1119-1134, 2024, DOI:10.32604/cmes.2023.030915

    Abstract In this paper, we consider the Chan–Vese (C-V) model for image segmentation and obtain its numerical solution accurately and efficiently. For this purpose, we present a local radial basis function method based on a Gaussian kernel (GA-LRBF) for spatial discretization. Compared to the standard radial basis function method, this approach consumes less CPU time and maintains good stability because it uses only a small subset of points in the whole computational domain. Additionally, since the Gaussian function has the property of dimensional separation, the GA-LRBF method is suitable for dealing with isotropic images. Finally, a numerical scheme that couples GA-LRBF… More > Graphic Abstract

    An Efficient Local Radial Basis Function Method for Image Segmentation Based on the Chan–Vese Model

  • Open Access

    PROCEEDINGS

    Research Advances on the Collocation Methods Based on the PhysicalInformed Kernel Functions

    Zhuojia Fu1,*, Qiang Xi2, Wenzhi Xu1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09393

    Abstract In the past few decades, although traditional computational methods such as finite element have been successfully used in many scientific and engineering fields, they still face several challenging problems such as expensive computational cost, low computational efficiency, and difficulty in mesh generation in the numerical simulation of wave propagation under infinite domain, large-scale-ratio structures, engineering inverse problems and moving boundary problems. This paper introduces a class of collocation discretization techniques based on physical-informed kernel function (PIKF) to efficiently solve the above-mentioned problems. The key issue in the physical-informed kernel function collocation methods (PIKFCMs) is to construct the related basis functions,… More >

  • Open Access

    PROCEEDINGS

    A Directional Fast Algorithm for Oscillatory Kernels with Curvelet-Like Functions

    Yanchuang Cao1, Jun Liu1, Dawei Chen1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09272

    Abstract Interactions of multiple points with oscillatory kernels are widely encountered in wave analysis. For large scale problems, its direct evaluation is prohibitive since the computational cost increases quadratically with the number of points.
    Various fast algorithms have been constructed by exploiting specific properties of the kernel function. Early fast algorithms, such as the fast multipole method (FMM) and its variants, H2-matrix, adaptive cross approximation (ACA), wavelet-based method, etc., are generally developed for kernels that are asymptotically smooth when source points and target points are well separated. For oscillatory kernels, however, the asymptotic smoothness criteria is only satisfied when the oscillation… More >

  • Open Access

    REVIEW

    Deep Learning Applied to Computational Mechanics: A Comprehensive Review, State of the Art, and the Classics

    Loc Vu-Quoc1,*, Alexander Humer2

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1069-1343, 2023, DOI:10.32604/cmes.2023.028130

    Abstract Three recent breakthroughs due to AI in arts and science serve as motivation: An award winning digital image, protein folding, fast matrix multiplication. Many recent developments in artificial neural networks, particularly deep learning (DL), applied and relevant to computational mechanics (solid, fluids, finite-element technology) are reviewed in detail. Both hybrid and pure machine learning (ML) methods are discussed. Hybrid methods combine traditional PDE discretizations with ML methods either (1) to help model complex nonlinear constitutive relations, (2) to nonlinearly reduce the model order for efficient simulation (turbulence), or (3) to accelerate the simulation by predicting certain components in the traditional… More >

  • Open Access

    ARTICLE

    Power Transformer Fault Diagnosis Using Random Forest and Optimized Kernel Extreme Learning Machine

    Tusongjiang Kari1, Zhiyang He1, Aisikaer Rouzi2, Ziwei Zhang3, Xiaojing Ma1,*, Lin Du1

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 691-705, 2023, DOI:10.32604/iasc.2023.037617

    Abstract Power transformer is one of the most crucial devices in power grid. It is significant to determine incipient faults of power transformers fast and accurately. Input features play critical roles in fault diagnosis accuracy. In order to further improve the fault diagnosis performance of power transformers, a random forest feature selection method coupled with optimized kernel extreme learning machine is presented in this study. Firstly, the random forest feature selection approach is adopted to rank 42 related input features derived from gas concentration, gas ratio and energy-weighted dissolved gas analysis. Afterwards, a kernel extreme learning machine tuned by the Aquila… More >

Displaying 1-10 on page 1 of 107. Per Page