Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (49)
  • Open Access

    ARTICLE

    Bond Graph Modelling and Simulation of Static Recrystallization Kinetics in Multipass Hot Steel Rolling

    S.K. Pal1, D.A. Linkens2

    CMC-Computers, Materials & Continua, Vol.2, No.2, pp. 113-118, 2005, DOI:10.3970/cmc.2005.002.113

    Abstract In hot rolling, the final thickness of the strip is achieved through plastic deformation of the original stock by a series of counter-rotating rollers. In this work, static recrystallization kinetics in between two stages of steel rolling has been modelled, and simulation studies have also been performed to find out the effect of entry temperature on the recrystallization kinetics. A viable bond graph model has been developed to study the kinetics of the process. Low-carbon steel has been considered for this purpose. More >

  • Open Access

    ARTICLE

    Meshless LocalWeak form Method Based on a Combined Basis Function for Numerical Investigation of Brusselator Model and Spike Dynamics in the Gierer-Meinhardt System

    Mohammad Ilati1, Mehdi Dehghan2

    CMES-Computer Modeling in Engineering & Sciences, Vol.109-110, No.4, pp. 325-360, 2015, DOI:10.3970/cmes.2015.109.325

    Abstract In this paper, at first, a new combined shape function is proposed. Then, based on this shape function, the meshless local weak form method is applied to find the numerical solution of time-dependent non-linear Brusselator and Gierer- Meinhardt systems. The combined shape function inherits the properties of radial point interpolation (RPI), moving least squares (MLS) and moving Kriging (MK) shape functions and is controlled by control parameters, which take different values in the domain [0;1]. The combined shape function provides synchronic use of different shape functions and this leads to more flexibility in the used method. The main aim of… More >

  • Open Access

    ARTICLE

    On the Modelling of Rate-Dependent Domain Switching in Piezoelectric Materials under Superimposed Stresses

    A. Arockiarajan1, A. Menzel2

    CMES-Computer Modeling in Engineering & Sciences, Vol.20, No.1, pp. 55-72, 2007, DOI:10.3970/cmes.2007.020.055

    Abstract To study rate-dependent properties of piezoelectric materials a micro-mechanically motivated model is applied in this work. The developed framework is embedded into a coupled three-dimensional finite element setting, whereby each element is assumed to represent one grain and, moreover, possesses a random initialisation of the underlying polarisation direction. Furthermore, an energy-based criterion is used for the initiation of the onset of domain switching and the subsequent propagation of domain wall motion during the switching process is modelled via a linear kinetics theory. The interaction between individual grains is thereby incorporated by means of a probabilistic approach -- a purely phenomenologically… More >

  • Open Access

    ARTICLE

    On the Modelling of Rate-Dependent Domain Switching in Piezoelectric Materials under Superimposed Stresses

    A. Arockiarajan1, A. Menzel2

    CMES-Computer Modeling in Engineering & Sciences, Vol.19, No.2, pp. 163-178, 2007, DOI:10.3970/cmes.2007.019.163

    Abstract To study rate-dependent properties of piezoelectric materials a micro-mechanically motivated model is applied in this work. The developed framework is embedded into a coupled three-dimensional finite element setting, whereby each element is assumed to represent one grain and, moreover, possesses a random initialisation of the underlying polarisation direction. Furthermore, an energy-based criterion is used for the initiation of the onset of domain switching and the subsequent propagation of domain wall motion during the switching process is modelled via a linear kinetics theory. The interaction between individual grains is thereby incorporated by means of a probabilistic approach -- a purely phenomenologically… More >

  • Open Access

    ARTICLE

    Application of a Diffusion Model to Predict Drying Kinetics Changes Under Variable Conditions: Experimental and Simulation Study

    L. Bennamoun1, A. Belhamri2, A. Ali Mohamed

    FDMP-Fluid Dynamics & Materials Processing, Vol.5, No.2, pp. 177-192, 2009, DOI:10.3970/fdmp.2009.005.177

    Abstract This study focuses on the interplay between drying kinetics (encountered in typical industrial processes and particularly in the context of solar drying) and the possible variation of external (e.g., environmental) conditions. Theoretical models of these behaviours are introduced. Experimental results confirmed by simulation are also presented. Variation of the thermo physical properties of air is taken into account in terms of variation of viscosity, density and coefficient of diffusion. In particular, this coefficient is calculated from experimental data and expressed as a function of the wet bulb air temperature. When external conditions are modified and, as a natural consequence, also… More >

  • Open Access

    ARTICLE

    Study of Heat and Mass Transfer in Porous Media: Application to Packed-Bed Drying

    L. Bennamoun1, A. Belhamri2

    FDMP-Fluid Dynamics & Materials Processing, Vol.4, No.4, pp. 221-230, 2008, DOI:10.3970/fdmp.2008.004.221

    Abstract This work focuses on tyipical heat and mass transfer phenomena during the processing of products in the context of the packed-bed drying method (products arranged in thick layers into dryers working in forced convection mode). The dryers are modeled as porous media at the macroscopic level. The simulations are carried out using the mass, momentum (written in the framework of the Darcy's law approximation) and energy equations applied for the different components. A diffusion model based on Fick's law is also used to take into account the drying kinetics. This approach allows monitoring of the variations of humidity and temperature… More >

  • Open Access

    ARTICLE

    The Concept of a Vibrational Cell for Studying the Interface Chemical Kinetics. Vibrational Flow Structure

    A.A. Ivanova1, V.G. Kozlov1,2,3, D.A. Polezhaev1, D. Pareau3, M. Stambouli3

    FDMP-Fluid Dynamics & Materials Processing, Vol.4, No.3, pp. 211-220, 2008, DOI:10.3970/fdmp.2008.004.211

    Abstract The problem for the optimization of mass-transfer on the interface of two immiscible liquids by means of vibrational hydromechanics is studied experimentally. A new vibrational cell of Lewis's type expressly conceived for such purposes is described. Flow is generated by activators in the form of disks inducing translational axial oscillations near the opposite end faces of the cavity. It is shown that such vibrating disks can lead to the onset of a large-scale toroidal whirlwind effectively mixing the liquid throughout the volume. According to the experiments, in particular, axisymmetrical radial flows are generated on both sides of the horizontal liquid… More >

  • Open Access

    ARTICLE

    Biological Tissue Growth in a Double-Scaffold Configuration

    Marcello Lappa1

    FDMP-Fluid Dynamics & Materials Processing, Vol.2, No.2, pp. 141-152, 2006, DOI:10.3970/fdmp.2006.002.141

    Abstract Numerical simulations and computer-graphics animation can be used as useful tools to discern the physicochemical environmental factors affecting the surface kinetics of growing biological tissues as well as their relative importance in determining growth. A mathematical formalism for such kinetics is proposed through parametric investigation and validated through focused comparison with experimental results. The study relies on the application of a CFD moving boundary (Volume of Fluid) method specially conceived for the simulation of these problems. In the second part of the analysis the case of two samples hydrodynamically interacting in a rotating bioreactor is considered. The interplay between two… More >

  • Open Access

    ARTICLE

    Development and Optimization of an Unstructured Kinetic Model for Sodium Gluconate Fermentation Process

    CMC-Computers, Materials & Continua, Vol.48, No.1, pp. 43-55, 2015, DOI:10.3970/cmc.2015.048.043

    Abstract This study proposed a modified unstructured kinetic model for sodium gluconate fermentation by Aspergillus niger. Four specific growth rate equations (Monod, Tessier, Contois, and logistic) were considered in the biomass growth equation. The growth, instantaneous biomass concentration, instantaneous product, and substrate concentration were considered in the equations of product formation and substrate consumption. Option parameters were introduced to determine the form of the unstructured model. A double-nested optimization strategy was proposed to optimize the option and kinetic parameters. The proposed unstructured kinetic model based on the estimated optimal parameters efficiently simulated sodium gluconate fermentation. The obtained option parameters of the… More >

Displaying 41-50 on page 5 of 49. Per Page