Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (94)
  • Open Access

    ARTICLE

    Effective Length of Beam on Elastic Foundation Under a Moving Load

    Chen-Ming Kuo1, Cheng-Hao Huang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.65, No.3, pp. 245-258, 2010, DOI:10.3970/cmes.2010.065.245

    Abstract Vibrations induced by high-velocity train passing through environmental sensitive area are important issues to railway authorities. Research has been granted to resolve the environmental impact generated from vehicle-track interaction to the neighbor buildings. Models were established to simulate the vehicle-track interaction system which is the source of vibrations. Among them, Euler beam with finite length on elastic foundation subjected to moving loads is most commonly used to simulate the continuous track on site. The reason of modeling infinite length track with finite length model is to make solving possible by numerical analysis. However, the accuracy of analysis depends on the… More >

  • Open Access

    ARTICLE

    Finite Element Nonlinear Analysis for Catenary Structure Considering Elastic Deformation

    B.W. Kim1, H.G. Sung1, S.Y. Hong1, H.J. Jung2

    CMES-Computer Modeling in Engineering & Sciences, Vol.63, No.1, pp. 29-46, 2010, DOI:10.3970/cmes.2010.063.029

    Abstract This paper numerically investigates the behavior of sag and tension of inclined catenary structure considering elastic deformation. Equilibrium equation for computing elastic catenary is formulated by employing finite element method (FEM). Minimum potential energy principle and the Lagrange multiplier method are used in the formulation to derive equilibrium equation with constraint condition for catenary length. Since stiffness and loading forces of catenary are dependent on its own geometry, the equilibrium equation is nonlinear. Using the iterative scheme such as fixed point iteration or bisection, equilibrium position and tension are found. Based on the formulation, a Fortran solver is developed in… More >

  • Open Access

    ARTICLE

    Dispersion of One Dimensional Stochastic Waves in Continuous Random Media

    C. Du1, H. Bai2, J. Qu3, X. Su1,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.61, No.3, pp. 223-248, 2010, DOI:10.3970/cmes.2010.061.223

    Abstract Second, or higher, order harmonics have great potential in fatigue life prediction. In this study, the dispersion properties of waves propagating in the nonlinear random media are investigated. An one dimensional nonlinear model based on the nonlinear Hikata stress-strain relation is used. We applied perturbation method, the Liouville transformation and the smoothing approximation method to solve the one dimensional nonlinear stochastic wave equation. We show easily that the dispersion equations for all higher order terms will be the same with the corresponding linear random medium by perturbation method. The linear stochastic equation with two random coefficients is greatly simplified to… More >

  • Open Access

    ARTICLE

    On Solving the Ill-Conditioned System Ax=b: General-Purpose Conditioners Obtained From the Boundary-Collocation Solution of the Laplace Equation, Using Trefftz Expansions With Multiple Length Scales

    Chein-Shan Liu1, Weichung Yeih2, Satya N. Atluri3

    CMES-Computer Modeling in Engineering & Sciences, Vol.44, No.3, pp. 281-312, 2009, DOI:10.3970/cmes.2009.044.281

    Abstract Here we develop a general purpose pre/post conditionerT, to solve an ill-posed system of linear equations,Ax=b. The conditionerTis obtained in the course of the solution of the Laplace equation, through a boundary-collocation Trefftz method, leading to:Ty=x, whereyis the vector of coefficients in the Trefftz expansion, andxis the boundary data at the discrete points on a unit circle. We show that the quality of the conditionerTis greatly enhanced by using multiple characteristic lengths (Multiple Length Scales) in the Trefftz expansion. We further show thatTcan be multiplicatively decomposed into a dilationTDand a rotationTR. For an odd-orderedA, we develop four conditioners based on… More >

  • Open Access

    ARTICLE

    A Highly Accurate Technique for Interpolations Using Very High-Order Polynomials, and Its Applications to Some Ill-Posed Linear Problems

    Chein-Shan Liu1, Satya N. Atluri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.43, No.3, pp. 253-276, 2009, DOI:10.3970/cmes.2009.043.253

    Abstract Since the works of Newton and Lagrange, interpolation had been a mature technique in the numerical mathematics. Among the many interpolation methods, global or piecewise, the polynomial interpolation p(x) = a0 + a1x + ... + anxn expanded by the monomials is the simplest one, which is easy to handle mathematically. For higher accuracy, one always attempts to use a higher-order polynomial as an interpolant. But, Runge gave a counterexample, demonstrating that the polynomial interpolation problem may be ill-posed. Very high-order polynomial interpolation is very hard to realize by numerical computations. In this paper we propose a new polynomial interpolation… More >

  • Open Access

    ARTICLE

    A Modified Trefftz Method for Two-Dimensional Laplace Equation Considering the Domain's Characteristic Length

    Chein-Shan Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.21, No.1, pp. 53-66, 2007, DOI:10.3970/cmes.2007.021.053

    Abstract A newly modified Trefftz method is developed to solve the exterior and interior Dirichlet problems for two-dimensional Laplace equation, which takes the characteristic length of problem domain into account. After introducing a circular artificial boundary which is uniquely determined by the physical problem domain, we can derive a Dirichlet to Dirichlet mapping equation, which is an exact boundary condition. By truncating the Fourier series expansion one can match the physical boundary condition as accurate as one desired. Then, we use the collocation method and the Galerkin method to derive linear equations system to determine the Fourier coefficients. Here, the factor… More >

  • Open Access

    ARTICLE

    MAADLY Spanning the Length Scales in Dynamic Fracture

    Farid F. Abraham1

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.4, pp. 63-70, 2000, DOI:10.3970/cmes.2000.001.515

    Abstract A challenging paradigm in the computational sciences is the coupling of the continuum, the atomistic and the quantum descriptions of matter for a unified dynamic treatment of a single physical problem. We described the achievement of such a goal. We have spanned the length scales in a concerted simulation comprising the finite-element method, classical molecular dynamics, quantum tight-binding dynamics and seamless bridges between these different physical descriptions. We illustrate and validate the methodology for crack propagation in silicon. More >

  • Open Access

    ARTICLE

    The Effect of the Fin Length on the Solidification Process in a Rectangular Enclosure with Internal Fins

    Laila Khatra1,*, Hamid El Qarnia1, Mohammed El Ganaoui2

    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.2, pp. 125-137, 2019, DOI:10.32604/fdmp.2019.04713

    Abstract The aim of the proposed work is to study the solidification process within a rectangular enclosure provided with three internal rectangular fins attached to the left vertical wall of the cavity. This latest is filled with a phase change material (PCM), initially liquid, at a temperature above its melting temperature. The solidification process was initiated by cooling the left wall and fins to a temperature lower than the melting temperature. In order to study and examine the thermal behavior and thermal performance of the proposed system, a mathematical model, based on the conservation equations of mass, momentum and energy was… More >

  • Open Access

    ARTICLE

    Precursor Film Length Ahead Droplet Traveling on Solid Substrate

    I. Ueno1, T. Konisho2, T. Kawase3, T. Watanabe4

    FDMP-Fluid Dynamics & Materials Processing, Vol.4, No.1, pp. 21-26, 2008, DOI:10.3970/fdmp.2008.004.021

    Abstract The present authors carried out an experimental study with a special interest upon the dynamics of the fluid in the vicinity of the boundary line of three phases; solid-liquid-gas interface, which is so-called `contact line.' The moving droplet on the solid substrate is accompanied with the movement of the boundary line of three phases; solid-liquid-gas interface, which is so-called macroscopic 'contact line.' Existing studies have indicated there is a thin liquid film known as 'precursor film' ahead the contact line of the droplet. In the present study the precursor film was detected by applying conventional ellipsometer, and its existing length… More >

  • Open Access

    ARTICLE

    Enforcing Boundary Conditions in Micro-Macro Transition for Second Order Continuum

    Łukasz Kaczmarczyk1

    CMC-Computers, Materials & Continua, Vol.4, No.2, pp. 55-62, 2006, DOI:10.3970/cmc.2006.004.055

    Abstract In recent years the multiscale computational homogenisation has been extensively developed. Such micro-macro modelling does not require any constitutive assumptions at the macro-level. The multi-scale computational homogenisation has also been extended for the second order continuum at the macro level Kouznetsova V.G., Geers M.G.D., and Brekelmans V.A.M (2004). The second-order framework is based on incorporation of the gradient of macroscopic deformation in micro to macro multiscale transition. The introduction of the secondorder continuum at macro-scale takes into account the size effect and gives more accurate results in case of insufficient scale separation. The general framework of computational homogenisation has been… More >

Displaying 81-90 on page 9 of 94. Per Page