Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (15)
  • Open Access

    ARTICLE

    Low-Carbon Economic Dispatch of Electric-Thermal-Hydrogen Integrated Energy System Based on Carbon Emission Flow Tracking and Step-Wise Carbon Price

    Yukun Yang*, Jun He, Wenfeng Chen, Zhi Li, Kun Chen

    Energy Engineering, Vol.122, No.11, pp. 4653-4678, 2025, DOI:10.32604/ee.2025.068199 - 27 October 2025

    Abstract To address the issues of unclear carbon responsibility attribution, insufficient renewable energy absorption, and simplistic carbon trading mechanisms in integrated energy systems, this paper proposes an electric-heat-hydrogen integrated energy system (EHH-IES) optimal scheduling model considering carbon emission stream (CES) and wind-solar accommodation. First, the CES theory is introduced to quantify the carbon emission intensity of each energy conversion device and transmission branch by defining carbon emission rate, branch carbon intensity, and node carbon potential, realizing accurate tracking of carbon flow in the process of multi-energy coupling. Second, a stepped carbon pricing mechanism is established to… More >

  • Open Access

    ARTICLE

    Low-Carbon Operation Optimization of Integrated Energy System Considering Multi-Equipment Coordination and Multi-Market Interaction

    Cheng Peng1,*, Hao Qi2

    Energy Engineering, Vol.122, No.11, pp. 4579-4602, 2025, DOI:10.32604/ee.2025.067704 - 27 October 2025

    Abstract Integrated energy systems (IES) are widely regarded as a key enabler of carbon neutrality, enabling the coordinated use of electricity, heat, and gas to support large-scale renewable integration. Yet their practical deployment still faces major challenges, including rigid thermoelectric coupling, insufficient operational flexibility, and fragmented carbon and certificate market mechanisms. To address these issues, this study proposes a low-carbon economic dispatch model for integrated energy systems (IES) that reduces emissions and costs while improving renewable energy utilization. A coordinated framework integrating carbon capture, utilization, and storage, two-stage power-to-gas, combined heat and power, and ground-source heat… More > Graphic Abstract

    Low-Carbon Operation Optimization of Integrated Energy System Considering Multi-Equipment Coordination and Multi-Market Interaction

  • Open Access

    ARTICLE

    Coordinated Scheduling of Electric-Hydrogen-Heat Trigeneration System for Low-Carbon Building Based on Improved Reinforcement Learning

    Jiayun Ding, Bin Chen*, Yutong Lei, Wei Zhang

    Energy Engineering, Vol.122, No.11, pp. 4561-4577, 2025, DOI:10.32604/ee.2025.067574 - 27 October 2025

    Abstract In the field of low-carbon building systems, the combination of renewable energy and hydrogen energy systems is gradually gaining prominence. However, the uncertainty of supply and demand and the multi-energy flow coupling characteristics of this system pose challenges for its optimized scheduling. In light of this, this study focuses on electro-thermal-hydrogen trigeneration systems, first modelling the system’s scheduling optimization problem as a Markov decision process, thereby transforming it into a sequential decision problem. Based on this, this paper proposes a reinforcement learning algorithm based on deep deterministic policy gradient improvement, aiming to minimize system operating… More >

  • Open Access

    ARTICLE

    Low-Carbon Economic Dispatch Strategy for Integrated Energy Systems with Blue and Green Hydrogen Coordination under GHCT and CET Mechanisms

    Aidong Zeng1,2,*, Zirui Wang1, Jiawei Wang 3, Sipeng Hao1,2, Mingshen Wang4

    Energy Engineering, Vol.122, No.9, pp. 3793-3816, 2025, DOI:10.32604/ee.2025.069410 - 26 August 2025

    Abstract With the intensification of the energy crisis and the worsening greenhouse effect, the development of sustainable integrated energy systems (IES) has become a crucial direction for energy transition. In this context, this paper proposes a low-carbon economic dispatch strategy under the green hydrogen certificate trading (GHCT) and the ladder-type carbon emission trading (CET) mechanism, enabling the coordinated utilization of green and blue hydrogen. Specifically, a proton exchange membrane electrolyzer (PEME) model that accounts for dynamic efficiency characteristics, and a steam methane reforming (SMR) model incorporating waste heat recovery, are developed. Based on these models, a… More > Graphic Abstract

    Low-Carbon Economic Dispatch Strategy for Integrated Energy Systems with Blue and Green Hydrogen Coordination under GHCT and CET Mechanisms

  • Open Access

    ARTICLE

    Low-Carbon Game Synergistic Strategy for Multi-Park Hydrogen-Doped Integrated Energy System Accessing to Active Distribution Network Based on Dynamic Carbon Baseline Price

    Xin Zhang1,*, Shixing Zhang1, Lina Chen2, Jihong Zhang1, Peihong Yang1, Zilei Zhang1, Xiaoming Zhang1

    Energy Engineering, Vol.122, No.9, pp. 3647-3679, 2025, DOI:10.32604/ee.2025.067035 - 26 August 2025

    Abstract A park hydrogen-doped integrated energy system (PHIES) can maximize energy utilization as a system with multiple supplies. To realize win-win cooperation between the PHIES and active distribution network (ADN), the cooperative operation problem of multi-PHIES connected to the same ADN is studied. A low-carbon hybrid game coordination strategy for multi-PHIES accessing ADN based on dynamic carbon base price is proposed in the paper. Firstly, multi-PHIES are constructed to form a PHIES alliance, including a hydrogen-doped gas turbine (HGT), hydrogen-doped gas boiler (HGB), power to gas and carbon capture system (P2G-CCS), and other equipment. Secondly, a… More > Graphic Abstract

    Low-Carbon Game Synergistic Strategy for Multi-Park Hydrogen-Doped Integrated Energy System Accessing to Active Distribution Network Based on Dynamic Carbon Baseline Price

  • Open Access

    REVIEW

    Research of Low-Carbon Operation Technologies for PEDF Parks: Review, Prospects, and Challenges

    Ziwen Cai1,2, Yun Zhao1,2, Zongyi Wang1,2, Tonghe Wang3,*, Yunfeng Li1,2, Hao Wang3

    Energy Engineering, Vol.122, No.4, pp. 1221-1248, 2025, DOI:10.32604/ee.2025.061452 - 31 March 2025

    Abstract With the severe challenges brought by global climate change, exploring and developing clean and renewable energy systems to upgrade the energy structure has become an inevitable trend in related research. The comprehensive park systems integrated with photovoltaic, energy storage, direct current, and flexible loads (PEDF) is able to play an important role in promoting energy transformation and achieving sustainable development. In order to fully understand the advantages of PEDF parks in energy conservation and carbon reduction, this paper summarizes existing studies and prospects future research directions on the low-carbon operation of the PEDF park. This… More >

  • Open Access

    ARTICLE

    Low-Carbon Economic Dispatch Strategy for Integrated Energy Systems under Uncertainty Counting CCS-P2G and Concentrating Solar Power Stations

    Zhihui Feng1, Jun Zhang1, Jun Lu1, Zhongdan Zhang1, Wangwang Bai1, Long Ma1, Haonan Lu2, Jie Lin2,*

    Energy Engineering, Vol.122, No.4, pp. 1531-1560, 2025, DOI:10.32604/ee.2025.060795 - 31 March 2025

    Abstract In the background of the low-carbon transformation of the energy structure, the problem of operational uncertainty caused by the high proportion of renewable energy sources and diverse loads in the integrated energy systems (IES) is becoming increasingly obvious. In this case, to promote the low-carbon operation of IES and renewable energy consumption, and to improve the IES anti-interference ability, this paper proposes an IES scheduling strategy that considers CCS-P2G and concentrating solar power (CSP) station. Firstly, CSP station, gas hydrogen doping mode and variable hydrogen doping ratio mode are applied to IES, and combined with… More >

  • Open Access

    ARTICLE

    Novel Low-Carbon Optimal Operation Method for Flexible Distribution Network Based on Carbon Emission Flow

    Chao Gao1, Kai Niu2,*, Wenjing Chen3, Changwei Wang1, Yabin Chen1, Rui Qu2

    Energy Engineering, Vol.122, No.2, pp. 785-803, 2025, DOI:10.32604/ee.2024.058705 - 31 January 2025

    Abstract With the widespread implementation of distributed generation (DG) and the integration of soft open point (SOP) into the distribution network (DN), the latter is steadily transitioning into a flexible distribution network (FDN), the calculation of carbon flow distribution in FDN is more difficult. To this end, this study constructs a model for low-carbon optimal operations within the FDN on the basis of enhanced carbon emission flow (CEF). First, the carbon emission characteristics of FDNs are scrutinized and an improved method for calculating carbon flow within these networks is proposed. Subsequently, a model for optimizing low-carbon… More >

  • Open Access

    ARTICLE

    Low-Carbon Dispatch of an Integrated Energy System Considering Confidence Intervals for Renewable Energy Generation

    Yan Shi1, Wenjie Li1, Gongbo Fan2,*, Luxi Zhang1, Fengjiu Yang1

    Energy Engineering, Vol.121, No.2, pp. 461-482, 2024, DOI:10.32604/ee.2023.043835 - 25 January 2024

    Abstract Addressing the insufficiency in down-regulation leeway within integrated energy systems stemming from the erratic and volatile nature of wind and solar renewable energy generation, this study focuses on formulating a coordinated strategy involving the carbon capture unit of the integrated energy system and the resources on the load storage side. A scheduling model is devised that takes into account the confidence interval associated with renewable energy generation, with the overarching goal of optimizing the system for low-carbon operation. To begin with, an in-depth analysis is conducted on the temporal energy-shifting attributes and the low-carbon modulation… More >

  • Open Access

    ARTICLE

    Two-Stage Low-Carbon Economic Dispatch of Integrated Demand Response-Enabled Integrated Energy System with Ladder-Type Carbon Trading

    Song Zhang1, Wensheng Li2, Zhao Li2, Xiaolei Zhang1, Zhipeng Lu1, Xiaoning Ge3,*

    Energy Engineering, Vol.120, No.1, pp. 181-199, 2023, DOI:10.32604/ee.2022.022228 - 27 October 2022

    Abstract Driven by the goal of “carbon neutrality” and “emission peak”, effectively controlling system carbon emissions has become significantly important to governments around the world. To this end, a novel two-stage low-carbon economic scheduling framework that considers the coordinated optimization of ladder-type carbon trading and integrated demand response (IDR) is proposed in this paper for the integrated energy system (IES), where the first stage determines the energy consumption plan of users by leveraging the price-based electrical-heat IDR. In contrast, the second stage minimizes the system total cost to optimize the outputs of generations with consideration of More >

Displaying 1-10 on page 1 of 15. Per Page