Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (237)
  • Open Access

    ARTICLE

    Prediction of COVID-19 Transmission in the United States Using Google Search Trends

    Meshrif Alruily1, Mohamed Ezz1,2, Ayman Mohamed Mostafa1,3, Nacim Yanes1,4, Mostafa Abbas5, Yasser El-Manzalawy5,*

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 1751-1768, 2022, DOI:10.32604/cmc.2022.020714 - 03 November 2021

    Abstract Accurate forecasting of emerging infectious diseases can guide public health officials in making appropriate decisions related to the allocation of public health resources. Due to the exponential spread of the COVID-19 infection worldwide, several computational models for forecasting the transmission and mortality rates of COVID-19 have been proposed in the literature. To accelerate scientific and public health insights into the spread and impact of COVID-19, Google released the Google COVID-19 search trends symptoms open-access dataset. Our objective is to develop 7 and 14-day-ahead forecasting models of COVID-19 transmission and mortality in the US using the… More >

  • Open Access

    ARTICLE

    Optimized U-Net Segmentation and Hybrid Res-Net for Brain Tumor MRI Images Classification

    R. Rajaragavi1,*, S. Palanivel Rajan2

    Intelligent Automation & Soft Computing, Vol.32, No.1, pp. 1-14, 2022, DOI:10.32604/iasc.2022.021206 - 26 October 2021

    Abstract A brain tumor is a portion of uneven cells, need to be detected earlier for treatment. Magnetic Resonance Imaging (MRI) is a routinely utilized procedure to take brain tumor images. Manual segmentation of tumor is a crucial task and laborious. There is a need for an automated system for segmentation and classification for tumor surgery and medical treatments. This work suggests an efficient brain tumor segmentation and classification based on deep learning techniques. Initially, Squirrel search optimized bidirectional ConvLSTM U-net with attention gate proposed for brain tumour segmentation. Then, the Hybrid Deep ResNet and Inception More >

  • Open Access

    ARTICLE

    Accurate Multi-Site Daily-Ahead Multi-Step PM2.5 Concentrations Forecasting Using Space-Shared CNN-LSTM

    Xiaorui Shao, Chang Soo Kim*

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 5143-5160, 2022, DOI:10.32604/cmc.2022.020689 - 11 October 2021

    Abstract

    Accurate multi-step PM2.5 (particulate matter with diameters 2.5um) concentration prediction is critical for humankinds’ health and air population management because it could provide strong evidence for decision-making. However, it is very challenging due to its randomness and variability. This paper proposed a novel method based on convolutional neural network (CNN) and long-short-term memory (LSTM) with a space-shared mechanism, named space-shared CNN-LSTM (SCNN-LSTM) for multi-site daily-ahead multi-step PM2.5 forecasting with self-historical series. The proposed SCNN-LSTM contains multi-channel inputs, each channel corresponding to one-site historical PM2.5 concentration series. In which, CNN and LSTM are used to

    More >

  • Open Access

    ARTICLE

    Deep Learning Based Modeling of Groundwater Storage Change

    Mohd Anul Haq1,*, Abdul Khadar Jilani1, P. Prabu2

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 4599-4617, 2022, DOI:10.32604/cmc.2022.020495 - 11 October 2021

    Abstract The understanding of water resource changes and a proper projection of their future availability are necessary elements of sustainable water planning. Monitoring GWS change and future water resource availability are crucial, especially under changing climatic conditions. Traditional methods for in situ groundwater well measurement are a significant challenge due to data unavailability. The present investigation utilized the Long Short Term Memory (LSTM) networks to monitor and forecast Terrestrial Water Storage Change (TWSC) and Ground Water Storage Change (GWSC) based on Gravity Recovery and Climate Experiment (GRACE) datasets from 2003–2025 for five basins of Saudi Arabia. An… More >

  • Open Access

    ARTICLE

    Dynamic Hand Gesture Recognition Using 3D-CNN and LSTM Networks

    Muneeb Ur Rehman1, Fawad Ahmed1, Muhammad Attique Khan2, Usman Tariq3, Faisal Abdulaziz Alfouzan4, Nouf M. Alzahrani5, Jawad Ahmad6,*

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 4675-4690, 2022, DOI:10.32604/cmc.2022.019586 - 11 October 2021

    Abstract Recognition of dynamic hand gestures in real-time is a difficult task because the system can never know when or from where the gesture starts and ends in a video stream. Many researchers have been working on vision-based gesture recognition due to its various applications. This paper proposes a deep learning architecture based on the combination of a 3D Convolutional Neural Network (3D-CNN) and a Long Short-Term Memory (LSTM) network. The proposed architecture extracts spatial-temporal information from video sequences input while avoiding extensive computation. The 3D-CNN is used for the extraction of spectral and spatial features More >

  • Open Access

    ARTICLE

    Multi-Level Knowledge Engineering Approach for Mapping Implicit Aspects to Explicit Aspects

    Jibran Mir1, Azhar Mahmood2,*, Shaheen Khatoon3

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 3491-3509, 2022, DOI:10.32604/cmc.2022.019952 - 27 September 2021

    Abstract Aspect's extraction is a critical task in aspect-based sentiment analysis, including explicit and implicit aspects identification. While extensive research has identified explicit aspects, little effort has been put forward on implicit aspects extraction due to the complexity of the problem. Moreover, existing research on implicit aspect identification is widely carried out on product reviews targeting specific aspects while neglecting sentences’ dependency problems. Therefore, in this paper, a multi-level knowledge engineering approach for identifying implicit movie aspects is proposed. The proposed method first identifies explicit aspects using a variant of BiLSTM and CRF (Bidirectional Long Short… More >

  • Open Access

    ARTICLE

    Arrhythmia and Disease Classification Based on Deep Learning Techniques

    Ramya G. Franklin1,*, B. Muthukumar2

    Intelligent Automation & Soft Computing, Vol.31, No.2, pp. 835-851, 2022, DOI:10.32604/iasc.2022.019877 - 22 September 2021

    Abstract Electrocardiography (ECG) is a method for monitoring the human heart’s electrical activity. ECG signal is often used by clinical experts in the collected time arrangement for the evaluation of any rhythmic circumstances of a topic. The research was carried to make the assignment computerized by displaying the problem with encoder-decoder methods, by using misfortune appropriation to predict standard or anomalous information. The two Convolutional Neural Networks (CNNs) and the Long Short-Term Memory (LSTM) fully connected layer (FCL) have shown improved levels over deep learning networks (DLNs) across a wide range of applications such as speech… More >

  • Open Access

    ARTICLE

    Intelligent Audio Signal Processing for Detecting Rainforest Species Using Deep Learning

    Rakesh Kumar1, Meenu Gupta1, Shakeel Ahmed2,*, Abdulaziz Alhumam2, Tushar Aggarwal1

    Intelligent Automation & Soft Computing, Vol.31, No.2, pp. 693-706, 2022, DOI:10.32604/iasc.2022.019811 - 22 September 2021

    Abstract Hearing a species in a tropical rainforest is much easier than seeing them. If someone is in the forest, he might not be able to look around and see every type of bird and frog that are there but they can be heard. A forest ranger might know what to do in these situations and he/she might be an expert in recognizing the different type of insects and dangerous species that are out there in the forest but if a common person travels to a rain forest for an adventure, he might not even know… More >

  • Open Access

    ARTICLE

    ResNet CNN with LSTM Based Tamil Text Detection from Video Frames

    I. Muthumani1,*, N. Malmurugan2, L. Ganesan3

    Intelligent Automation & Soft Computing, Vol.31, No.2, pp. 917-928, 2022, DOI:10.32604/iasc.2022.018030 - 22 September 2021

    Abstract Text content in videos includes applications such as library video retrievals, live-streaming advertisements, opinion mining, and video synthesis. The key components of such systems include video text detection and acknowledgments. This paper provides a framework to detect and accept text video frames, aiming specifically at the cursive script of Tamil text. The model consists of a text detector, script identifier, and text recognizer. The identification in video frames of textual regions is performed using deep neural networks as object detectors. Textual script content is associated with convolutional neural networks (CNNs) and recognized by combining ResNet More >

  • Open Access

    ARTICLE

    An improved CRNN for Vietnamese Identity Card Information Recognition

    Trinh Tan Dat1, Le Tran Anh Dang1,2, Nguyen Nhat Truong1,2, Pham Cung Le Thien Vu1, Vu Ngoc Thanh Sang1, Pham Thi Vuong1, Pham The Bao1,*

    Computer Systems Science and Engineering, Vol.40, No.2, pp. 539-555, 2022, DOI:10.32604/csse.2022.019064 - 09 September 2021

    Abstract This paper proposes an enhancement of an automatic text recognition system for extracting information from the front side of the Vietnamese citizen identity (CID) card. First, we apply Mask-RCNN to segment and align the CID card from the background. Next, we present two approaches to detect the CID card’s text lines using traditional image processing techniques compared to the EAST detector. Finally, we introduce a new end-to-end Convolutional Recurrent Neural Network (CRNN) model based on a combination of Connectionist Temporal Classification (CTC) and attention mechanism for Vietnamese text recognition by jointly train the CTC and… More >

Displaying 171-180 on page 18 of 237. Per Page